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Abstract

Since its introduction in 2011, there have been over 4,000 MOOCs (Massive Open
Online Courses) on various subjects on the Web, serving over 35 million learners.
MOOCs have shown the ability to transcend time and space, democratize knowledge
dissemination, and bring the best education in the world to every learner. However,
the disparate distances between participants, the size of the learner population, and
the heterogeneity of the learners’ backgrounds make it extremely difficult for instruc-
tors to interact with the learners in a timely manner, which adversely affects learning
experience and outcome.

To address the challenges, in this thesis, we propose a framework: educational
content linking. By linking and organizing pieces of learning content scattered in
various course materials into an easily accessible structure, we hypothesize that this
framework can provide learners guidance and improve content navigation. Since most
instruction and knowledge acquisition in MOOCs takes place when learners are sur-
veying course materials, better content navigation may help learners find supporting
information to resolve their confusion and thus improve learning outcome and expe-
rience.

To support our conjecture, we present end-to-end studies to investigate our frame-
work around two research questions. We first ask, can manually generated linking
improve learning? For investigating this question, we choose two STEM courses,
statistics and programming language, and demonstrate how the annotation of link-
ing among course materials can be done with collaboration between course staff and
online workers. With the annotation, we implement an interface that can present
learning materials and visualize the linking among them simultaneously. We observe
that, in a large-scale user study, this interface enables users to search for desired
course materials more efficiently, and retain more concepts more readily. This result
supports the notion that manual linking can indeed improve learning outcomes. Sec-
ond, we ask, can learning content be generated with machine learning methods? For
this question, we propose an automatic content linking algorithm based on condi-
tional random fields. We demonstrate that automatically generated linking can still
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lead to better learning, although the magnitude of the improvement over the unlinked
interface is smaller. We conclude that our linking framework can be implemented at
scale with machine learning techniques.

Thesis Supervisor: Victor W. Zue
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

Since 2011, a revolution called MOOCs (Massive Open Online Courses) began in

university education [15, 108]. Today, a mere five years after the first MOOC was

launched, over 4000 MOOCs, from science and engineering to humanities and law,

have been offered on the Web and have served over 35 million learners using plat-

forms such as Coursera, edX, Udacity, and FutureLearn [133, 31, 36, 135, 43]. These

MOOCs have been created by over 500 top institutions in the world and taught by top

instructors. In addition, MOOCs allow free enrollment and enable learners around

the globe to take courses without the need for physical presence. Thus, MOOCs have

the potential to transcend time and space, democratize knowledge dissemination, and

bring opportunities to learners in every corner of the world.

MOOCs inspire a new model to deliver quality education. In conventional res-

idential education, we have classes of much smaller sizes. These classes are taught

in thousands of institutions on the same subject with only slight variation. In con-

trast, MOOCs adopt a distributed model. This model can accumulate the investment

of offering these classes in institutions and instructors, and allow course builders to

allocate their time and efforts more efficiently in implementing various state-of-the-

art and research-based pedagogies, such as active learning, mastery learning, and

cooperative learning, in the course [104, 27, 28]. Thus, MOOCs provide enormous

educational value to learners and instructors. Evidence suggests that well-designed

MOOCs alone can lead to high levels of student learning and satisfaction [104]. In
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addition, we have observed a growing trend of college instructors’ adoption in blended

classrooms [82]. In blended learning, residential classroom instructors utilize exist-

ing MOOC content to save their efforts in course material preparation, and thus

they can focus on interacting with students to create a learner-centered environment

[119, 29, 55].

However, the open and free character of MOOCs has also created a set of chal-

lenges that are not observed in conventional education, that is, the sheer size of the

learner body, and the heterogeneity of their backgrounds [33]. A MOOC typically

has thousands to tens of thousands of learners with various demographics, course

preparedness, learning goals, and motivations. With such size and heterogeneity of

a class, conventional one-size-fits-all pedagogy is not sufficient. For example, in the

same MOOC, some learners may struggle with elementary concepts due to having in-

sufficient prerequisite background, while another group of learners may already have

years of experience in the industry of the relevant area and their learning goal is to

update their job skills. Due to the distant nature, learners in MOOCs usually rely

on self-regulated learning to resolve their own learning needs. For instance, a learner

who is confused about a topic in the lecture video may choose to pause the video,

turn to textbook or discussion forum for more understandable description, and re-

turn to the video when this learner feels crystal clear about the underlying topic. In

this way, different learners may take various learning paths and learning materials

for their diverse learning needs. Nonetheless, because of the unfamiliarity of learners

with the course subject as well as the amount of learning content in a MOOC, it is

usually cumbersome for learners to find suitable content.

To address the challenges, in this thesis we propose a framework: educational

content linking. This framework allows linking and organizing scattered educational

materials in a MOOC, as well as visualizing conceptual relations across these mate-

rials. Since the visualization can provide guidance for learners to navigate through

materials, we expect this framework can help learners achieve self-regulated learning

by allowing them to find appropriate information efficiently.
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1.1 Motivation

One-to-one tutoring has been shown to be extremely effective in enhancing learning

outcomes [13]. However, this approach is too costly, and thus for many years, edu-

cators have dreamt of achieving similar effective size to the one-to-one model with a

scalable approach [13]. A significant number of studies have tried to unveil how peo-

ple learn and why one-to-one tutoring is so successful in improving learning [136, 51].

One of the key factors could be constructive struggle: much research have shown

that keeping learners in a state of engagement between boredom and confusion has

a substantial positive impact on learning [39, 120, 35]. Outside the laboratory, such

strategy has also been commonly applied to keep learners engaged, e.g., by asking

students questions, inserting quizzes into lecture videos, or providing instructional

scaffolding (Instructors provide sufficient support to learn a concept, while, during

the entire learning process, support is taken away gradually to promote learners de-

veloping deeper-level knowledge).

Timely responses to confusion play a crucial role in the success of this strategy,

and failing to do so can affect learning in the opposite way, such as causing frus-

tration, or making learners stop participation. In a MOOC scenario, the incredibly

low instructor-to-learner ratio and the heterogeneous background of learners make re-

sponding to learning needs extremely challenging. To address the problem, typically

instructors can provide pre-defined hints, optional course materials, or even intelligent

tutoring systems (ITS) to serve various needs and confusions. Another alternative is

relying on learners to discover answers themselves in the course forums or on the Web.

Both approaches are helpful but with several downsides. Providing hints, optional

materials or ITS, even with the help from state-of-the-art machine learning methods,

means lots of hand-crafting, such as designing banks of responses or individualized

pathways for different needs. This approach is neither scalable nor generalizable from

course to course. Furthermore, application of this approach in undergraduate-level or

graduate-level subjects, which are the focus of MOOCs, is more cumbersome, since

concepts in such a level of subjects are much more complicated. In contrast, the
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alternative way is much more scalable. The model of learnersourcing [67] can po-

tentially generate responses to diverse learning needs at scale. However, due to the

amount of generated responses and needs, matching between the two is challenging.

For example, although ideally a learner can find answers for every confusion in the

MOOC’s forum or from the Web, looking for useful contents from the huge database

can be troublesome. The searching is more difficult for beginning learners since they

may have trouble in describing their needs.

1.2 Educational content linking

Therefore in this thesis we propose a third way, educational content linking. In this

framework learning contents scattered in different types of course materials, such

as lecture videos, slides, discussions forums, or quizzes, are linked based on their

conceptual relation. A tree is then built based on the linking and presented to learners

along with the content. Visualizing the relation provides guidance for learners to

navigate through the content. Thus, we surmise that learners can find appropriate

content for their various learning needs with much less effort, and tailor the learning

path to suit their background. Furthermore, this framework has two extra upsides.

First, since we do not limit this framework to any types of materials, educational

content linking can work with both approaches described in the previous section

seamlessly. Second, since a conceptual relation is the only property that has to be

inferred, this framework is simple enough to be realized with state-of-the-art machine

learning and human language technologies (HLTs). The simplicity of the framework

also means that this model can potentially work well in general cases rather than

certain constrained environments.

In Fig. 1-1 we give an example to illustrate how educational content linking works

by comparing course materials presented in the traditional way to our proposed

"linked" way. In the figure, different types of materials are represented in differ-

ent colors. Content in each type of materials is segmented into smaller units, called

learning objects in this thesis, and represented as nodes here. In this framework, the
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Figure 1-1: Schematics of the transformation of several independent course materials
to a linked structure. Each color illustrates one type of education material. Note that
here linking refers to conceptual relation across materials.

only requirement for learning objects is that an object should convey concepts in a

self-contained way so that learners can understand. Thus, in realization of the frame-

work an object can be any reasonable unit such as a textbook section, a discussion

thread, or a vignette of video.

The left-hand side of Fig. 1-1 illustrates how materials are presented in MOOCs

conventionally. Objects are aligned in sequence based on syllabus, table of contents,

or user-created time. Various types of materials are made available to learners as

disjoint entities. In this scenario, a student interested in a specific concept cannot

easily look up relevant information from various materials, e.g., from lectures or slides

to sections of the textbook or discussions. In addition, the amount of user-generated

content, such as discussions, is usually too large to be accessed efficiently if only

organized chronologically.

In contrast, in educational content linking, the courseware is linked across material

types and presented as a tree, which is illustrated on the right-hand side of Fig. 1-

1. In this tree, one type of course materials is specified as the trunk, as shown in

red nodes in the figure. This type of materials is utilized to extract the syllabus

represented by the trunk. The rest of the materials are employed to build leaves of

the tree. Each leaf, as represented in blue and green nodes in the figure, corresponds

to a learning object that is related to an object from the trunk material. In this

framework, conceptual relations among learning objects are visualized in addition to
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Figure 1-2: The experimental pipeline for approaching the question: if we are able to
link course materials using human annotators, would it help learners?
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Figure 1-3: The experimental pipeline for approaching question: can the courseware
be linked at scale with machine learning methods?

the original sequential presentation of materials. Thus, we expect that learners can

better compare content from varied materials and identify useful information for them

more efficiently.

The goal of this thesis is therefore to prove our hypothesis: educational content

linking can help learners find desired information at scale. We focus our investigation

on two research questions: 1), if we are able to link course materials using human

annotators, would it help learners?, and 2), can the courseware be linked at scale with

machine learning methods? Figs. 1-2 and 1-3 outline the steps we take in this thesis

to approach the two questions.

Fig. 1-2 shows how we proceed in question 1. In the investigation, we first choose
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subjects of MOOCs to focus on and collect corresponding course materials. Human

annotators are then recruited to label conceptual relations among learning objects in

these materials. After that, we design an interface to present material content along

with linking to users. With the interface, user studies are conducted to observe how

learners accomplish learning tasks with different strategies of material presentation.

We recruit workers from Amazon Mechanical Turk (Turkers) [99] to realize the study

on a massive scale with reasonable cost. Task results are analyzed to explore how

linking can affect learning.

As for the second question, our investigation is summarized in Fig. 1-3. We adopt

a similar pipeline to approach this question, except that we replace human annota-

tors with a machine learning algorithm to label the linking. With the automation,

implementation of educational content linking can be scalable.

1.3 Contributions

The primary contributions of this thesis can be summarized as follows:

∙ Proposed a framework of courseware presentation that allows learners to navi-

gate much more easily. We have found that learners, especially novices, can find

desired information faster without sacrificing accuracy, and can retain concepts

more readily with our proposed approach. This framework can also be easily

integrated with different pedagogies to further improve learning.

∙ Developed an end-to-end study with Turkers to explore effects of proposed

framework on learning. The pipeline is a practical solution to investigate various

pedagogies on a massive scale.

∙ Proposed a method based on machine learning and human language technolo-

gies, or HLTs, to discover linking automatically. We showed that realizing

educational content linking can be scalable at least for STEM (Science, Tech-

nology, Engineering and Math) courses. Results suggested that learners still
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benefit from linking labeled automatically, with a slightly smaller improvement

than with the handcrafted system.

1.4 Thesis overview

The remainder of this thesis is organized as follows:

∙ Chapter 2 lays the groundwork for educational content linking by covering re-

lated research in education and HLTs. It also provides descriptions about the

MOOCs and course materials used in this thesis.

∙ Chapter 3 describes the detail on how we approach the first research question:

can linking help learning? We discuss the annotation of linking, the implemen-

tation of an interface which presents course content and conceptual relation,

the conducting of user study, and the results.

∙ Chapter 4 presents an automatic linking method based on machine learning and

HLTs. By analyzing how linking labeled with this method affects learning, this

chapter investigates the second research question: can linking be done at scale?

∙ Chapter 5 reviews the experiments and contributions of this thesis, and proposes

directions for future research.
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Chapter 2

Background

This chapter gives background concepts of the three main building blocks in this

thesis: learning science to motivate the entire framework as well as supervise the

system design and learning interface implementation; crowdsourcing and learn-

ersourcing to recruit participants and effort at scale; machine learning and un-

derstanding to fuel the automation of the system. We review related literature and

offer background material in these four domains. Additionally, a description of course

materials used in experiments throughout this thesis will also be provided.

2.1 Learning science

For many years education practitioners and researchers endeavor to discover better

ways of learning from a variety of aspects [51, 6, 4]. Researchers try to unveil the mech-

anism of learning, knowledge acquisition, and long-term memory establishment from

cognitive science and psychology; practitioners design theory-grounded and evidence-

based approaches in their classes to improve student performance. The mental state

of learners and its effect on learning is one of the most discussed topics. Constructive

struggle shows positive impact on learning performance by keeping learners in a men-

tal state of boredom and confusion alternatively [39, 120, 35]. Jean Piaget proposed a

theory describing how cognitive disequilibrium, such as confusion, can drive a human

to develop new knowledge schema or rebuild an existing one, i.e., motivate the process
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of learning [66]. However, without being properly resolved in time, confusion can lead

to frustration or even dropping out [35, 144]. Active learning emphasizes the engag-

ing of learners in discussion, high-order thinking, problem solving, or peer teaching

[14]; it has demonstrated a positive impact on learning outcomes by increasing en-

thusiasm in students and maintaining their interest in the course [132, 41]. Cognitive

load theory suggests that a complicated learning environment can overwhelm limited

working memory of a human, cause distraction or frustration, and is detrimental to

learning outcomes [78, 64, 130]. Although these theories seem contradictory at first

glance, all of them imply the importance of balancing between challenging learners

with confusion and easing their load with a proper response.

2.1.1 Tutoring at scale

Due to the delicacy of the learning mechanism, one-to-one tutoring, which is the model

where learners can receive maximum attention from teachers, has set a benchmark in

education that is hard to match [13]. However, a one-to-one model is cost prohibitive.

In order to provide quality education to each and every learner, the idea of intelligent

tutoring systems (ITSs) has been proposed [136, 111, 5]. ITS is a computer system

that provides immediate feedback or hints to students based on their current learning

states. For example, when asked to write a piece of code solving "square root of

a number x" with guess-and-check algorithm, in an ITS students can first choose

strategy "start with a guess, g". After implementing corresponding code, students can

choose following strategy such as "check whether g times g equals x", "claim g as the

answer", or "make a new guess". The system gives feedback such as congratulating

learners, asking to try again, or providing hints either on each step or waiting until

the students have submitted solutions. The example here shows an ITS applied in a

problem-solving task. Actually, the framework can be implemented for different tasks

to assist students in different learning stages [18, 17]. Since the tutoring is based on

a computer, ITS can help many more learners at the same time.

Although ITS has been shown to be effective on improving learning outcomes

at much larger scale than one-to-one tutoring [136], authoring such a system takes
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a lot of effort [111]. A great tutor is made of an abundance of knowledge derived

from years of his/her experience in teaching. Thus, codifying the knowledge and

designing instruction strategies in the system, e.g., deciding what exactly the feedback

to the learner is, is an extremely complex task. While solutions involving automated

methods such as machine learning exist for some components in the system [24, 49,

34], the state-of-the-art artificial intelligence techniques are insufficient in solving the

entire problem. Thus, it is usually done by handcrafted rules to codify instruction

strategies. Because of the effort that has to be taken, authoring an ITS from scratch

is still expensive.

Because of the demand for human input, a peer-to-peer model is proposed for

scalability. Learnersourcing demonstrates how learners can collectively contribute

to improving learning material and interfaces for future learners, and engage in a

meaningful learning activity simultaneously [67]. Mitros and Sun presented a simi-

lar framework that allows a community of students and instructors to jointly create

and polish tutoring resources around a shared skeleton [103]. Glassman and others

demonstrated that learners can work collaboratively, generating rich problem solving

hints and strategies [46], as well as designing complex assessment questions [102]. By

automatically ranking submissions of a coding problem based on stylistic mastery

from novice to experts, AutoStyle can provide students the "just a little better" sub-

missions from others to improve their coding style incrementally [26]. The model of

peer grading is another frequently applied strategy to offer learners feedback at scale

with minimal instructor input [134, 110]. In addition to receiving knowledge and

feedback passively, learners can also take the initiative and seek help from commu-

nities in a course forum [15] or even a question-answering (Q&A) site such as Stack

Overflow [125]. In this peer-to-peer model, tutoring resources are created by em-

ploying the wisdom from a massive learner body, and thus the required efforts from

instructors or experts are greatly reduced. Furthermore, the opportunity of reflecting

on others’ confusions and preventing the curse of knowledge are the other two pluses

[46]. The former allows learners to revisit and rethink their understanding, and the

latter bridges the gap between learners and instructors, who sometimes cannot put
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themselves in students’ shoes [20].

However, content created with this model usually suffers from information overload

and chaos [143]. For example, a discussion board in a MOOC may have thousands of

users and thousands of simultaneous threads, with great response time and quality.

But for a learner who is three days behind in the course schedule, it is already impos-

sible to follow existing discussions [58]. The peer-created materials are overwhelming

and cause confusion. Inspired by the requirement of helping students receive suit-

able responses from an exploding amount of learning content, researchers have begun

to explore a scalable means for organizing peer-generated content. Asking peers to

tag content they generated is one frequently adopted strategy [10], but sometimes

criticized for the lack of accuracy and consistency [116]. Wise et al. introduce an

automated algorithm to identify forum posts that are related to course topics [143].

The detection of structure in discussion threads with natural language understanding

is also investigated [30, 128, 86, 87, 123].

This thesis proposes a framework of responding to learners’ confusion with well-

organized learning content. In this framework, linking among content is discovered

automatically and visualized when learners seek help. We aim to help learners re-

solve confusion by providing guidance for content navigation. Content generated

by instructors and peers are both used, which illustrates the generalizability of our

method. A user study is also explored to provide evidence of benefit in learning.

2.1.2 Course navigation

In this thesis, we introduce a method of automatically organizing learning content

as well as the resolution of learners’ confusion with guidance for navigating content.

The importance of guided instruction in teaching is discussed in detail by Kirschner

et al. from aspects of human cognitive structure and the expert-novice difference

[70]. Furthermore, due to the distant nature of MOOCs and online learning, learners

usually depend on self-regulated learning to resolve their own learning needs, and

whether the self-regulated learning can be achieved is highly correlated to the effi-

ciency of finding desired learning materials. Hence, there is a rich thread of research
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in providing guidance for navigating online learning content.

Kim demonstrates how to extract structure from learning videos with learners’

collective video interaction and annotation data [67]. With the possibility of non-

linear navigation of videos, which is empowered by the extracted structure, learners

reported a better learning experience. The LinkedUp project aims at linking open ed-

ucation resources through the use of Uniform Resource Identifier (URI) and Resource

Description Framework (RDF) to improve access of content [48]. In Adaptive Edu-

cational Hypermedia, materials are organized using a concept map diagram [16, 32].

Study navigator supports the simultaneous access to multiple textbook sections, one

for the current concept to learn, and the rest for background knowledge [2]. The

alignment between textbook and lecture videos [101], and the restructuring of ency-

clopedic resources [97] are also proposed for better navigation. This thesis offers an

end-to-end study in content organization and navigation, from the idea of linking and

the algorithmic method, to the visualization of relationships and user study.

2.2 Crowdsourcing

In the previous section we discussed the peer-to-peer model of tutoring. This model

is actually an application of crowdsourcing. A typical crowdsourcing system relies

on crowd workers recruited from the Web (e.g., workers on Amazon Mechanical Turk

[99]) to provide human computation for complicated parts (usually the parts that

cannot be easily solved with a computer) in the system. By taking advantage of the

large-scaled online community, huge problems can be divided and solved at much

lower costs.

Wikipedia is one of the most compelling examples of crowdsourcing. This project

of recording all human knowledge in the form of an online encyclopedia solicits con-

tributions from anyone with an Internet connection. Since its launch in 2001, its

repository now accumulates over 5.2 million articles with comprehensive topic cov-

erage [106]. Games with a purpose (GWAP) proposes the idea of embedding work

into games [140]. Researchers disguise a computation problem as an online game.
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While people play the game, they are actually serving as processors in a giant dis-

tributed system and solving the problem without consciously doing so. The ESP

game is one of the earliest successes in GWAP [139]. In the ESP game, two play-

ers are shown the same picture and they have to independently label the picture

with words. Players can earn scores when their labels are matched and the goal

of the game is to maximize earned scores within a fixed period of time. The real

computation problem behind the game is labeling images with natural language, and

players generated annotations for almost 300,000 images in its first four-month period

of deployment. Other examples of crowdsourcing projects include translation (e.g.,

MIT OpenCourseWare [http://ocw.mit.edu/courses/translated-courses/], or

talks in TED conferences [http://www.ted.com/participate/translate]), helping

scientific discovery (e.g., Foldit [https://fold.it/]), or public health (e.g., Food

Source Information [http://fsi.colostate.edu/]). These projects are driven by

noble goals (such as the public good) or offering personal benefits (such as fun). These

motivations attract a large number of people on the Web and make recruitment of

the crowd possible.

This thesis contributes to this line of work through two crowdsourcing applica-

tions: we utilize learning content generated by peers (i.e., course forum) for confusion

resolution and recruit online workers as subjects in experiments. In the former ap-

plication, the incentive for learners to contribute is that their work can not only help

their peers, but also themselves and future learners. As for the latter application,

workers are partially motivated by the opportunity to learn from MOOC materials.

2.2.1 Micropayment workforces

However, not every project has a goal that can attract the general public to contribute,

and it is usually difficult to design a win-win condition for both researchers and the

crowd. A more general approach is to pay the crowd to complete tasks, and there are

many online crowdsourcing platforms offering services of matching and payment be-

tween task requesters and anonymous online workers. These platforms include Ama-

zon Mechanical Turk (AMT) [99], CrowdFlower [https://www.crowdflower.com/],
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and InnoCentive [https://www.innocentive.com/].

These platforms are widely used among data scientists in academia and industry

to access the online workers for a variety of tasks. McGraw demonstrates an organic

automatic speech recognition systems trained upon spoken utterances collected from

the crowd [98]. PlateMate collects object tagging and natural language description for

food photos from paid online workers, and allows users to upload photos of their meals

and get information about the food intake, composition, and nutrition [105]. Callison-

Burch presents a crowdsourcing workflow to evaluate quality of a machine translating

system [19]. There is much other research examining the usefulness of these paid

crowds for collecting, annotating, enriching, and evaluating data, including collecting

spoken caption of images [50], annotating intention in user-generated content [93],

real-time captioning of spoken content [77], and user interface evaluation [71].

In this thesis, we utilize the paid online workers recruited on AMT as experimental

subjects in two research domains: natural language data annotation and user study

in education research. For the first domain we design workflows in which workers

have to understand natural language content in learning objects and label relations

among these objects; for the second domain, we design tasks meaningful in learning

for workers to complete and measure workers’ performance. By providing monetary

incentives to the crowd, we are able to complete experiments at a much faster rate.

2.2.2 Quality control

Quality is the most criticized issue of crowdsourcing. Because of the variance in work-

ers’ expertise, level of skills, effort, and personal bias, crowdsourcing usually yields

noisier results than a conventional paradigm [80]. Furthermore, the geographically

disparate nature of crowdsourcing makes it more difficult to communicate the task

guideline and keep workers on consistent procedural executions than in a controlled

environment such as a laboratory. Hence, there is a rich thread of research in studying

how to obtain satisfactory results with crowdsourcing.

According to Allahbakhsh et al., these approaches for quality control can be cat-

egorized into two general types, design time and run time [3]. The most common
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design time approach is filtering workers based on their profile, such as their previ-

ous task acceptance rate, their IP address as an estimator of their first language, or

performance in a qualification test. The profile filtering is supported in most crowd-

sourcing platforms. Another design time approach is effective task preparation. This

approach investigates how to improve quality through different worker incentives as

well as better task description, workflow, and interface. Mason and Watts found in-

trinsic incentive such as enjoyable tasks has a more positive effect on the result than

extrinsic incentive such as monetary rewards [96]. Learnersourcing described above is

one of the best examples to offer workers intrinsic incentives [67, 102, 46, 103]. For a

better workflow, CrowdForge proposes a framework to divide complex problems into

micro-tasks [72]. Since workers on crowdsourcing platforms are more familiar with

simple and independent tasks, this dividing strategy has a positive impact on the

results. Chen et al. also discuss in detail the importance of clear task description

(e.g., the experimental goal, who is eligible, how the result will be reviewed, and the

reward strategy) for the quality [23].

Run time approaches are another type of quality control strategy. The most

common way to do so is that experts review the results, and decide which ones are

not qualified and should be rejected. This review mechanism is supported in most

crowdsourcing platforms today. Another common approach is majority consensus.

By introducing redundancy and overlapping in task assignment, majority voting can

be employed to decide the real results. Karger et al. introduce a probabilistic ap-

proach to model the noisy answers from workers and improve quality [65]. There also

exist studies that redesign the workflow to control quality on the fly. Lee and Glass

demonstrate a multi-stage speech transcription system [81]. In this system, after each

stage of transcription a machine-learning-based low quality detector is trained to fil-

ter spammers and provide instantaneous feedback to workers. Many studies have

reported that, with proper quality control, crowdsourcing can yield good or near

expert-level task results [81, 63, 109].

This thesis adopts a wide range of quality control approaches to improve reliability

of online workers, including majority consensus, expert review, as well as clear task
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description, workflow, and interface. Moreover, in addition to monetary incentives,

our tasks also provide the opportunity to learn from MOOC materials.

2.3 Machine learning and human language under-

standing

The crowd can solve many complex computational problems at reasonable costs.

However, it will be more efficient if we can solve one problem and apply the so-

lution to other similar problems. This is made possible by the recent progress in

machine learning [11]. Given data that records computational problems and usu-

ally the corresponding solutions provided by a human, research in machine learning

explores algorithms or models that can summarize regularities and patterns in the

data, and solve relevant but unseen problems with discovered regularities. Thus, with

machine learning we can build a model from data annotated by a human (either a

trained data scientist or naïve online workers), and apply the model to solve future

in-domain problems automatically.

2.3.1 Human language technology

Machine learning is one of the most active research fields in computer science nowa-

days, and it has extremely diverse applications: stock market prediction [25], credit

card fraud detection [21], medical diagnosis [74], and intelligent robotics [73] to name

just a few. Among these applications, human language technology (HLT) is one of

the domains receiving the most attention.

Human language is pervasive in our daily life, and it is one of the most crucial

means for communication and information exchange. Since human language is ubiq-

uitous, there is a rich thread of research concerning HLT, investigating the producing

and understanding of human language as well as attempting to improve human-to-

human and human-to-machine communication. HLT is an interdisciplinary field that

includes natural language and speech processing, computational linguistics, statis-
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tics, and psychology. Due to the recent progress in machine learning, there is a trend

of applying machine learning techniques to solve HLT problems. For example, Liu

investigated machine-learning-based approaches to facilitate the access of rich user-

generated content online [91]. Shahaf et al. propose an algorithm to glue pieces of

information scattered in various news articles, and create a structured summary for

the entire story [121]. Other applications of machine learning in HLT include in-

formation retrieval [94], automatic speech recognition (ASR) [147, 85, 142, 83, 84],

semantic tagging [92], topic modeling [37], and automatic question answering [138].

Since human language is an integral part of education for knowledge transferring,

there is also research studying how to improve communication between learners and

instructors by understanding the natural language content in learning materials with

the aid of machine learning. Glass et al. demonstrated the MIT Lecture Browser.

By automatically transcribing speech in lecture videos with ASR techniques, learners

can easily browse through the text and identify topics they are interested in more

efficiently [45]. On top of the transcribed text, in the FAU Video Lecture Browser, key

phrases are also extracted, ranked, and presented along with aligned lecture video.

By clicking each key phrase, learners can access corresponding video vignettes for

detailed discussion [113]. Without transcribing speech to text beforehand, a method

matching spoken search queries to lecture speech directly on audio is also proposed

to improve video navigation [115]. Fujii et al. further presented an algorithm to

automatically summarize course lectures; thus learners can get the big picture behind

each lecture without watching the video from beginning to end [42].

Beyond the lectures, there also exist studies in understanding of textbook and

course forums with HLT and machine learning, since there is an abundance of nat-

ural language in these materials. Lin et al. proposed a method to classify genres of

discussion threads for improving accessibility of forums [90]. A similar idea is ap-

plied to identify questions and potential answers in discussion boards [59]. Li et al.

demonstrated how to build a semantic forum that allows semantic search, relational

navigation, and recommendation with HLT [89]. An automatic approach to discover

relevance among textbook sections was also investigated [2]. Due to the popularity of
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MOOCs, recent research has begun using HLT in understanding MOOC materials, in-

cluding intention classification and topic modeling for forum posts [128, 143, 127, 44],

textbook section recommendation for lecture videos [101], and automated essay scor-

ing [8].

These research strategies demonstrate that, with HLT, the machine can learn

to understand course materials as well as assist the information exchange among

teachers, students, and materials. Due to these advantages and the nature of MOOCs

(i.e., size of the audience and physical distance among them), HLT can play a crucial

role in improving the learning experience and performance in online learning. In this

thesis we introduce an HLT-based method to automatically discover relations among

various types of MOOC materials, and show its benefit in learning.

2.3.2 Conditional random fields (CRF)

In this thesis we adopt conditional random fields (CRF) to model the relations among

learning objects. CRF is an instance of graphical models [129], which is a graph

designed to model the conditional dependence structure among random variables (a

random variable is usually used to express the observation in data samples and the

hidden classes these samples belong to). The training and inference of CRF is well

studied in the machine learning field. Therefore, it is widely used in learning temporal

dependence from sequential data, such as speech, text, image, and bioinformatics

[92, 52, 118]. Since most course materials can be expressed with sequential structure,

we believe the CRF is a perfect match to our problem. In the following we will

introduce the mathematical definition, the training, and the inference of CRF.

A general CRF can be defined as follows: given Y as the set of unobserved

variables, and X as the set of observed ones, let G be a factor graph over X and Y. If,

for any x, the conditional probability p(y|x) can be factorized according to G, then

(X, Y ) is a conditional random field [129]. That is,

𝑝(y|x) =
1

Z(x)

A∏︁
𝑎=1

Ψ𝑎(y𝑎,x𝑎) (2.1)
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Figure 2-1: Diagram of general CRFs and linear chain CRFs.

where y is a vector denoting the assignment to Y, x denoting the assignment to X,

Ψ𝑎 is the set of factors in G, a is the index of factors, and Z(x) is the normalization

term.

Z(x) =
∑︁
y

A∏︁
𝑎=1

Ψ𝑎(y𝑎,x𝑎). (2.2)

Each factor Ψ𝑎 is a function of y𝑎 and x𝑎, which are subsets of the unobserved

and observed variables respectively (i.e., y𝑎 ⊆ 𝑌 and x𝑎 ⊆ 𝑋). The value of Ψ𝑎 is

a non-negative scalar, which can be interpreted as a measure of how compatible this

subset of assignment y𝑎 to the unobserved variables is with its dependent observations

x𝑎. An example of a general CRF and its corresponding factor graph is shown on

the left panel of Fig. 2-1. In this graph, Ψ1 depends on 𝑋1 and 𝑌1, and Ψ2 depends

on 𝑌2, 𝑋1, and 𝑋2 for instance. Since there is no constraint to the underlying factor

graph of CRF, we can see it is flexible in expressing various structures among data.

With equation 2.1, inferring labels (i.e., unobserved variables) from observations

can be modeled with a maximization problem: finding the label assignment y which

maximizes the conditional probability 𝑝(y|x) given the observations x. However,

solving this maximization problem in general CRFs is intractable [129]. There are

two usually adopted approaches to obtaining feasible solution. First, if we limit the

underlying factor graphs of CRFs to several special cases, e.g., a chain or a tree,

the exact inference can be solved in polynomial time. On the other hand, several

algorithms can be used to obtain approximate inferences, e.g., Markov chain Monte
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Carlo sampler [52], and loopy belief propagation [131]. Since a linear sequence is

the most common and dominant structure for arranging topics in course materials,

we choose the linear chain CRF in this thesis and design our algorithm based on it.

Another benefit of a linear chain architecture is that it reduces the model complexity

and mitigates overfitting. This is crucial, especially when annotated training data is

hard to obtain, such as in our problems.

In the right panel of Fig. 2-1, we show an example of linear chain CRFs. Similar

to general CRFs, 𝑋 and 𝑌 also represent the observed and unobserved variables

respectively, except that 𝑌𝑡 are structured to form a chain. This chain structure

adds a constraint to the probabilistic dependence expressed by the model that an

unobserved variable 𝑌𝑡 can directly depend on only the single previous unobserved

variable 𝑌𝑡−1 and several observations x𝑡 = {𝑋𝑡𝑠}𝑁(𝑌𝑡)
𝑠=1 . Here 𝑁(𝑌𝑡) denotes the

number of observed variables depending on 𝑌𝑡.

With the linear chain structure, the conditional probability 𝑝(y|x) can be rewritten

as following equation

𝑝(y|x) =
1

Z(x)

T∏︁
𝑡=1

Ψ𝑡(𝑌𝑡, 𝑌𝑡−1,x) (2.3)

by replacing Ψ𝑎, the set of factors in G, with Ψ𝑡. Each factor Ψ𝑡 is a function of 𝑌𝑡, 𝑌𝑡−1

and x, and these factors represent the linear-chain factor graph. In real application

Ψ𝑡 is usually set as the following form Ψ𝑡(𝑌𝑡, 𝑌𝑡−1,x) = exp{
∑︀K

𝑘=1 𝜃𝑘𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x)},

and Equation 2.3 is rewritten as

𝑝(y|x) =
1

Z(x)

T∏︁
𝑡=1

exp{
K∑︁

𝑘=1

𝜃𝑘𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x)}. (2.4)

Here 𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x) is a feature function that researchers need to design based on

domain knowledge, and 𝜃 = {𝜃𝑘}K𝑘=1 is the parameter set that has to be learned from

training data. This chain structure is called the Markov property, which assumes

the modeled stochastic process is memoryless, i.e., the prediction to the current un-

observed variable depends only on the prediction to the previous one, and no other

earlier prediction. Another popular model that assumes this property to hold is
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the hidden Markov models (HMM), and in fact this linear chain CRF can be inter-

preted as a generalized HMM, where the factor function Ψ does not need to have a

probabilistic interpretation as HMM does. With the memoryless property, the infer-

ence problem of linear chain CRF (as well as HMM) can be solved efficiently with a

dynamic-programming algorithm [129].

In addition to the inference problem, another issue of applying CRFs to real tasks is

parameter estimation, or training. The maximum likelihood criterion is typically used

for estimating parameters: given the fully labeled training data 𝐶 = {x(𝑖),y(𝑖)}N𝑖=1,

where (x(𝑖),y(𝑖)) is the 𝑖-th sample in the data, x(𝑖) = (x(𝑖)
𝑡 )T𝑡=1 is a sequence of obser-

vations, and y(𝑖) = (𝑌
(𝑖)
𝑡 )T𝑡=1 is a sequence of labels corresponding to 𝑥(𝑖), we estimate

the model parameter 𝜃 with the maximum likelihood estimator 𝜃 = argmax𝜃𝑙(𝜃). 𝑙(𝜃)

is the objective function and equals
∑︀N

𝑖=1 log𝑝(y(𝑖)|x(𝑖); 𝜃) with 𝑝(y(𝑖)|x(𝑖); 𝜃) as defined

in Equation 2.4. However, in general the estimator does not have an analytic form.

Therefore, a gradient ascent approach is adopted to obtain an approximate solution

to this optimization problem (other approaches also exist but gradient ascent is most

commonly used in practice). The algorithm for gradient ascent can be summarized

as follows:

Algorithm 1 Gradient ascent algorithm
1: Randomly initialize the parameter set 𝜃
2: repeat
3: Compute the gradient of the objective function, ∇𝑙(𝜃)
4: Update the parameter set 𝜃 according to pre-defined learning rate 𝜌

𝜃 := 𝜃 + 𝜌∇𝑙(𝜃)

5: until convergence criterion is achieved.

This algorithm updates the estimated parameters along the direction where the

objective function is increased most at each step. When the convergence criterion

(e.g., the difference of estimation in two consecutive iterations is less than the pre-

defined threshold) is achieved, the estimation is the trained model parameters. There

are many variations of this algorithm, such as Newton’s method, BFGS, and conjugate

gradient [129]. These variations attempt to improve convergence speed with different

techniques but share the same compute-gradient-and-update idea.
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These training and inference techniques are widely used in various applications of

linear chain CRF. In Chapter 4, we will discuss how to apply the general model in

our problem of linking discovery.

2.3.3 Word embedding

In order to apply statistical models to natural language content, we have to represent

content in a form that the model accepts, i.e., numeric vectors. Here we give an

introduction to the vector representations employed in this thesis.

The first representation is unigram embedding, or Bag of Word (BoW) embedding.

In this simple embedding, a document is represented as a vector [N(𝑤1), N(𝑤2), ...,

N(𝑤|𝑉 |)], where 𝑤𝑖 is the 𝑖-th word in vocabulary V, and N(𝑤𝑖) is the score of 𝑤𝑖 in

this document. The score can be the number of occurrences, the word frequency, or

term frequency-inverse document frequency (TF-IDF) [117]. The upside of unigram

embedding is that this method is intuitive and easy to train. However, since each

word is represented as an atomic unit in the vector and different words are encoded

independently, the long-range lexical dependency, such as the context of a word, is

missing in this representation.

To make the shallow and local representation embed lexical dependency in a longer

range, we can adopt an 𝑛-gram model, which is an extension of unigram embedding,

and each element in the vector represents a combination of 𝑛 words instead of a

single word. Nonetheless, this model provides only limited added value. An 𝑛-gram

model greatly increases the dimension of vector representation, since it exhaustively

enumerates all possible combinations of 𝑛 words. Due to the curse of dimensionality,

in practice we can only use a small 𝑛 in order not to overfit, especially when the size

of training data is limited. Thus, the range of dependency this method can encode is

still restricted.

We turn to word2vec embedding for our second representation with longer lexical

dependency [100]. Word2vec is a two-layer neural network. Its input is a text corpus

and its output is the vector representation for each word in the corpus. As com-

pared to the 𝑛-gram and unigram method, word2vec is a continuous language model,
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which means that each word is represented as a continuous vector. The upside of

this representation is its capability of encoding semantic and syntactic dependencies

among words. In the 𝑛-gram or unigram method, each word or combination of words

is represented with an independent element in the vector, and the relations among

words cannot be encoded efficiently; in word2vec, the neural network model is de-

signed to discover and represent semantic and syntactic dependencies from patterns

from words’ context. For instance, based on the word2vec model trained on millions

of Wikipedia pages, 𝑣King− 𝑣Man + 𝑣Woman ≈ 𝑣Queen, and 𝑣Apples− 𝑣Apple + 𝑣Car ≈ 𝑣Cars,

where 𝑣𝑖 denotes the word2vec representation of word 𝑖. With word2vec embedding,

the document representation can be simply obtained by averaging word vectors over

the entire document.

The word2vec embedding is trained using a feedforward neural network model

with architecture shown in Fig. 2-2 [114]. In the figure, x𝑡 is an one-hot vector with

its 𝑖-th element equal to 𝛿(𝑤𝑡 = 𝑣𝑖); W1 and W2 are matrices of weights to be learned

from a corpus; h is a vector of hidden layer projection obtained by transforming the

hidden layer input with the sigmoid function 𝜎; 𝑘 is the hyper-parameter deciding

the size of context for this model to learn from. Here 𝛿() is an indicator function with

𝑤𝑡 as the 𝑡-th word in corpus and 𝑣𝑖 as the 𝑖-th word in vocabulary. These vectors

and parameters are related to each other based on the following equation:

x𝑡 = W2h = W2(𝜎(W1[𝑥T
𝑡−𝑘, 𝑥

T
𝑡−𝑘+1, ..., 𝑥

T
𝑡+𝑘]T)). (2.5)

This model can be interpreted as a classifier trained to predict a word based on its

neighbors, typically using the Stochastic Gradient Descent (SGD) training algorithm.

The algorithm is very similar to the one introduced in Section 2.3.2, except that, in

each step, we update the estimated parameters W1 and W2 along the direction where

the objective function is decreased most, and we use cross entropy as the objective

function. After the training, the vector representation of 𝑤𝑡 is W1x𝑡. In this way,

the neural network can encode the long-range semantic and syntactic dependencies

in vectors by discovering patterns from the context of words.
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Figure 2-2: Architecture of feedforward neural network employed to obtain word2vec
embedding.

In fact, there are other common approaches to represent text documents as vec-

tors that encode high-level lexical and semantic information: doc2vec [79] and topic

modeling [107, 57, 12]. Doc2vec is a very similar algorithm to word2vec except that

it learns representation for larger blocks of text directly, such as paragraphs or sen-

tences. Topic modeling refers to a family of methods for discovering latent semantic

structure and identifying the subsets of words co-occurring more frequently in docu-

ments of various "topics". In this thesis we choose not to use these representations.

Doc2vec requires too much in-domain data for training. The learned "topics" in topic

modeling are too broad for our problem. For instance, with topic modeling we can
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easily identify python, complexity, or object oriented programming corresponding to

topic computer science, and standard deviation, or hypothesis testing belonging to

statistics. However, when it comes to distinguishing complexity from programming,

since the two concepts are in different lectures, topic modeling usually introduces a

lot of noise. Hence, we surmise that doc2vec and topic modeling are not suitable for

our problem.

2.4 Corpora

Before starting to implement our proposed framework and investigating the effects

on learning, we have to first decide which materials and MOOC subjects our system

should be built upon. Today there are over four thousands MOOCs on the Web cov-

ering subjects from science to humanities. Types of materials and pedagogies adopted

in these MOOCs are diverse. It is impractical to expect an exhaustive exploration

of every condition. Thus, in this thesis we make a tradeoff between feasibility of

experiments and generalizability of results. In the following we discuss the decisions

we make and the rationale.

2.4.1 Course subjects

Experiments in this thesis use two MOOCs: Introduction to Statistics: Descrip-

tive Statistics (Stat2.1x), and Introduction to Computer Science and Programming

(6.00x). Stat2.1x was offered by University of California, Berkeley, from February to

March in 2013 on edX [60], and 6.00x was offered by Massachusetts Institute of Tech-

nology (MIT), from February to June in 2013 on edX [1]. Stat2.1x is an introduction

to fundamental concepts and methods of statistics, which require basic high-school

level Mathematics. 6.00x is aimed at undergraduate students with little programming

experience, and discusses how to solve real problems with computational approaches

and computer programming. Both MOOCs were very successful. Stat2.1x has over

47,000 registrants, and 6.00x has over 72,000 registrants. Due to the popularity of

these two MOOCs and the growing interest in STEM education these years, we choose
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to focus investigation in this thesis on Stat2.1x and 6.00x. The popularity of under-

lying MOOC subjects makes findings in experiments more influential, representative

and likely to be applied to different conditions. Furthermore, our familiarity with the

topics is another plus.

In our following investigation, these two MOOCs serve different purposes. We

use Stat2.1x for developing minimum viable product [62] and 6.00x for the final

evaluation. In system development, minimum viable product is an intermediate stage

where a product with a minimum amount of features is built to gather information

and user feedback about the product. In this stage, the goal is to validate product

ideas from interaction with real users with minimum cost. This provides insights for

further system development and greatly reduces risk as compared to implementing

all features in the product at once. We believe Stat2.1x can serve this purpose well

for two reasons. First, this MOOC is shorter (less than two months) than most of

the others, but still contains necessary components and course materials. Therefore

we can implement our framework on a complete MOOC more readily, e.g., labeling

linking on fewer materials. Second, statistics is familiar and interesting to many, thus

making it easier to recruit experimental subjects in our study. For these reasons,

we select Stat2.1x for an intermediate validation of the benefit and scalability of

educational content linking. The role of Stat2.1x can be interpreted as a development

set in a machine learning system.

With the validation and feedback, we improve our implementation on 6.00x and

evaluate the resulting system in depth. In addition to aiming at answering fundamen-

tal questions such as whether linking is beneficial or scalable, we also explore advanced

features, such as reproducibility, generalizability, and portability of the framework.

We can interpret 6.00x as a test set in machine learning system. Using one MOOC for

development and a different MOOC for testing makes the evaluation more credible

and less subject to the criticism that we overfit our implementation to a particular

MOOC.

There are other benefits of using 6.00x. Since this MOOC was offered by MIT,

there are many more resources available to us. We can easily reach course staff and
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MIT students who have taken the corresponding course on campus for insightful

understanding. Moreover, this MOOC and its corresponding residential course have

been offered many times on edX and at MIT. These multiple offerings leave room for

expanding our survey along various dimensions in the future.

2.4.2 Course materials

Within a MOOC, a wide range of course materials are available to learners, such as lec-

ture videos, lecture slides, labs, textbook, discussion forum, course Wiki, quizzes and

exams. Considering the development cost, again we choose a subset from these mate-

rials for experiments in this thesis: lecture videos, slides, and textbook for Stat2.1x,

and the previous three materials together with discussion forum for 6.00x. There

are several reasons for us to make this choice. First, these types of materials are

common to many MOOCs nowadays and contain a large portion of learning con-

tent. Second, these materials have similar form over different course subjects. This

fact makes the experiment easier to reproduce from MOOC to MOOC. In contrast,

for example, quizzes and exams have diverse styles, from multiple-choice questions

to computational problems to essay writing, and each course subject emphasizes on

various styles. Thus it might be challenging to generalize experimental results to a

variety of MOOCs. Third, these materials allow us to investigate various types of

linking, from linking two types of materials composed by the same instructor that

can be aligned in order properly, to linking two materials with very different creators

and organization. One example of the first type is linking between lecture videos and

slides, and examples for the second one are linking lecture videos to textbook or to

discussion forum. We will explain these two types in detail in the next section. For

these reasons, we believe our choice of materials can help us obtain generalizable and

reproducible experimental results with reasonable cost.

Note that discussion forum is only chosen in the evaluation MOOC (i.e., 6.00x).

This is because accessing data with personally identifiable information, such as forum

posts, requires lengthy paperwork. This work should not be a part of development of

minimum viable product.
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Table 2.1: Summarization of sizes of course materials used in this thesis.
Sizes Words Vocabulary

Stat2.1x
Lecture video 7 hours 62k 1,743
Lecture slides 157 pages 11k 785
Textbook [126] 77 sections 45k 1,825
6.00x
Lecture video 21 hours 174k 3,086
Lecture slides 498 pages 32k 1,952
Textbook [47] 144 sections 119k 4,594
Discussion forum 1,239 threads 236k 6,772

In Table 2.1 we summarize the quantity of these materials. The first column lists

the number of video hours, slide pages, textbook sections, and discussion threads.

Here we measure the size of the textbook by number of sections rather than pages,

since the textbook used in Stat2.1x is a Web-based electronic book, and pages in this

book are not properly defined. Furthermore, considering the cost of data annotation,

we only used the threads posted under the lecture videos in our experiment; these

1,239 threads are about one tenth of the total posts in 6.00x. The second and third

columns show the number of words in the available material and the count of unique

words, respectively. Here video transcription is used for computing the number of

words.

From this table we observe that the amount of content in 6.00x is much greater

than the amount in Stat2.1x. This is another reason why we chose Stat2.1x to develop

the minimum viable product. The much smaller corpus means a faster process of

establishing linking among the course materials.
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Chapter 3

Would linking help learning?

This chapter investigates the first research question: if we are able to link course mate-

rials with human assistance, would it help learners? In MOOCs most instruction and

knowledge acquisition happen with learning content delivery. Thus, in the previous

chapter, we surmise that making materials more accessible by linking them together

can enhance learning experience and outcomes. For example, when learners are con-

fused at a specific point of the lecture, more accessible materials allow them to find

useful content for resolving their confusion more easily. In this chapter, we explore

the research question for supporting our theory with empirical evidence. To approach

this question, we will provide an end-to-end study investigating the following issues

∙ How to link course content with human assistance?

∙ How to present linking along with content to learners?

∙ How to measure the effect of linking on learning?

∙ Is linking helpful?

The study is conducted on two MOOCs: Stat2.1x and 6.00x, which are described

in detail in Section 2.4. In the first MOOC we evaluate the idea with minimum input,

and in the second MOOC we measure system performance in realistic conditions. In

our experiment, we discover that, using human annotation, we can build an interface
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presenting course material with meaningful interconnection. Our interface is shown

to be beneficial in supporting learners to complete their tasks: it allows learners to

search for information more efficiently, retain more concepts using the same amount

of time, and focus on informative learning content. Moreover, we contribute to the

research community by providing a user study pipeline that can be conducted at scale

and in a cost-effective way.

3.1 Linking materials

Linking is an abstract and general idea; however to implement a real system based

on the idea, a concrete definition is required. Linking refers to the relations among

objects and can typically be visualized as a graph diagram, with vertices representing

the objects and edges for the linking. However, ordinary people are usually not

comfortable interacting with a general graph diagram [53], since too many possible

paths in the graph is confusing and overloads the human cognitive system [70]; in order

not to distract learners, most learning content, e.g., lectures, or textbook sections, is

aligned in sequence. Therefore, we also limit our linking to a specific trunk-and-leaves

architecture. In this section, we will discuss how to link course content with human

assistance under this architecture.

3.1.1 The Linking tree

Fig. 3-1 illustrates the trunk-and-leaves architecture we limit the linking to, with blue

nodes representing the trunk and the rest for the leaves. A node in the diagram rep-

resents a learning object, which will be defined in Section 3.1.2. The trunk visualizes

the main flow of the courses and shows students a clear learning path they can follow.

Each leaf node attaches to one object on the trunk, and represents a supplementary

learning object for the corresponding trunk node.

In this thesis, we select lecture video sequences as the trunk of the tree, since

most online or residential classes are centered around lecture or lecture videos. In the

following, we will discuss how to obtain supplementary objects, i.e., the leaves, for
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Figure 3-1: Diagram of the trunk-and-leaves architecture (i.e., the linking tree).

each trunk node with human annotation.

3.1.2 Homologous and heterologous linking

We identify supplementary objects for each node on the trunk by discovering the

relation between three pairs of course materials: lecture videos and slides, videos

and textbook, as well as videos and discussions. In this thesis, instead of treating

the entire video as an atomic element, we discover the relation on the level of the

video segment. We surmise that the finer granularity is helpful in visualizing the

in-video structure, such as subgoals, subtopics, or meaningful conceptual pieces; the

structure improves learning and navigation by summarizing and abstracting low-level

details as well as reducing learners’ cognitive load [67]. In order to achieve this level

of granularity, we define a learning object as a segment of lecture video, a page in

lecture slides, a textbook section, or a discussion thread.

Before describing how to discover relations between materials, we first discuss two

types of relations: the homologous and heterologous linking. The reason why we

discuss these two types first is because their linking patterns are distinct, and the

difference can greatly affect how to discover relations. In Fig. 3-2, we show examples

of these two types of linking, with homologous in the upper panel and heterologous in
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Segments		 2 3	 5	 7	6	4	1

Objects	 A	 B	 C	

Objects	 a	 b	 c	

Segments	 2	 3	 5	 7	6	4	1

Figure 3-2: Examples of homologous (upper panel) and heterologous linking (lower
panel).

the lower. In the figure two sequences of learning objects from two types of materials

along with the relation between each object pair is illustrated. Here objects in the

trunk (i.e., segments of lecture videos) are represented as blue nodes, and objects

from another material (e.g., pages of slides, textbook sections or discussion threads)

are in orange or pink. The indices of objects are also labeled (1 to 7, A to C, and a

to c).

As shown in the figure, homologous linking is a many-to-one and monotonic (or

order preserving) mapping between two sequences of learning objects. A monotonic

mapping satisfies the following attribute:

x ≤𝛼 y implies 𝑓(x) ≤𝛽 𝑓(y) if 𝑓(x), 𝑓(y) is not ∅ (3.1)

where x and y are learning objects in material 𝛼, f (x) and f (y) are the objects

in material 𝛽 and linked to x and y respectively, and ∅ is the empty set. x ≤𝛼 y

refers to the case that object x comes before object y in the material sequence 𝛼; the

precedence can be defined by the chapter/section/lecture indices or the thread posted

time. Homologous linking mostly exists between two materials authored by the same

person, e.g., between video segments and slides, since in this case topic arrangement

in different materials usually follows the same ontology.
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In contrast, heterologous linking refers to the case when mappings between two

object sequences are many-to-many or not order preserving, as the example shown

in the lower panel of Fig. 3-2. In this example, the precedence of objects in one

sequence is not preserved after mapping these objects to objects in another sequence,

and there are many crisscrosses when visualizing the mapping. Heterologous linking

usually exists when the underlying two materials come from various authors. This is

because the cognitive system in which humans interpret and store knowledge varies

from person to person. It is very likely that various authors arrange topics and content

in different ways.

The linking between lecture videos and forum discussions, or lecture videos and

textbook can usually be classified as a heterologous relationship. For a textbook, its

arrangement of chapters and sections can be totally different from the arrangement

of lectures in a course. As for posts in a forum, if we sort them by created time, they

can also be in a distinct order from the lectures. This is because every learner has

various learning progress and pace; hence even at the same point in time, different

learners may start discussions about distinct topics.

In fact, instead of a dichotomy, it is more precise to interpret the monotonic

property as a spectrum, where the proportion of mapping that violates Equation 3.1

changes gradually from zero to one. For example, although both video-to-discussion

and video-to-textbook linking are not order-preserved, there are usually more criss-

crosses in the former. The reason why we choose to simplify the spectrum to two

conditions, the homologous and heterologous linking, is because it is not practical

to investigate every point on the spectrum. Since the proportion of order-preserved

mapping between materials is highly correlated to the complexity of identifying sup-

plementary objects, we design two methods to discover the relations for the two types

respectively.

3.1.3 Linking representation

Since homologous linking is a many-to-one and monotonic mapping, we formulate

the relation discovery as an alignment problem. In Fig. 3-3 we show how to annotate
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Segments		 2 3	 5	 7	6	4	1

Possible	supplementary	objects	 A	 B	 C	

Labels	 A	 B	 -	 C	-	B	A	

Figure 3-3: Annotating homologous linking as an alignment problem.

homologous linking based on this formulation to represent the relation configuration

between materials illustrated in the left panel of Fig. 3-2. Given two sequences of

materials, one is the trunk and the other is a set of candidates of the leaves, we

identify the non-overlapping, sequential chunk of trunk nodes corresponding to each

leaf in order, and label these nodes with the index of the leaf. Here, we define a chunk

of trunk nodes as corresponding to a leaf when the former and the latter contains

identical discussion to a concept. In addition, since the video transcription sentence

is the only unit that can be obtained easily and is at a finer granularity than the

entire video, we choose one sentence as a video segment (i.e., a node on the trunk).

We can adopt the same formulation for heterologous linking, as shown in the

upper panel of Fig. 3-4. However, in this case, since the aligned chunk of trunk nodes

does not have to be sequential, and the chunks for different leaves could overlap,

identifying these chunks is much more complicated than in the homologous case.

Furthermore, the possibility of one video segment aligned to multiple leaves makes

the problem become a multi-label classification one, which increases the complexity

of designing an automated method to infer the relation. Consequently, we propose

another formulation for heterologous linking, as shown in the lower panel of Fig. 3-4.

In this alternative formulation, we divide the entire relation identification problem

into several sub-problems by considering each leaf independently. That is, in each

sub-problem, our goal is to discover the relation between the sequences of trunk nodes

and a separate leaf. Each sub-problem can be interpreted as a binary classification

task, where every trunk node is classified as related (denoted as "Y" in the figure)

or non-related (denoted as "N") to the leaf. In this way, we can conquer the entire

problem by solving many much simpler sub-problems.
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Segments		 2 3	 5	 7	6	4	1

Possible	supplementary	objects	
a	

b	
a	

Labels	(alignment)	 ac	 b	 -	 c	-	b	ac	
	c	

Segments		 2 3	 5	 7	6	4	1

Labels	(binary	classificaAon)	
a	
b	
c	 Y	 N	 N	 N	N	N	Y	

Y	 N	 N	 Y	N	N	Y	
N	 Y	 N	 N	N	Y	N	

Figure 3-4: Annotating heterologous linking as an alignment problem (upper panel)
or a binary classification problem (lower panel).

We can also adopt a transcription sentence as a node on the trunk. However, the

workload of relation discovery can be too heavy for the human because we have many

sub-problems to solve. Since in the two MOOCs investigated in this thesis we have

both homologous and heterologous linking in the corpus, in implementation we first

annotate the former linking, and merge the sequential chunk of sentences that are

aligned to the same leaf as a new video segment (for clarity, in the following we refer

to this video unit used in heterologous linking as "video vignette", and use "video

segment" for a general purpose, e.g., sentence in homologous linking or vignette in

heterologous). These vignettes inferred from the alignment are used as trunk nodes

in the following heterologous linking to reduce the workload of annotators. Besides,

we define a trunk node as related to the leaf if the concept contained in the trunk

node is equivalent to, an instance of, or a part of the leaf. Here, we choose a more

lenient definition as compared to the "correspondence" defined in homologous linking,

because in the heterologous case, content is usually organized in various manners and

it is less likely to find identical mapping in the two underlying materials.

To sum up, in this thesis we link MOOC materials with the following steps:

1. Do homologous linking of video transcription sentences (trunk nodes) against
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lecture slides (leaves). The homologous linking is formulated as an alignment

problem.

2. Group transcription sentences linked to the same slide together, and define each

group as a "video vignette".

3. Do heterologous linking of video vignettes against textbook sections and dis-

cussion forum posts. The heterologous linking is formulated as a binary classi-

fication problem.

3.1.4 Annotation tasks

For these two types of linking, we design two websites to collect human annotation.

In Fig. 3-5, a screenshot of the website used for homologous linking is shown. Since,

in this thesis, the only homologous linking investigated is the alignment between

lecture video transcription and slides, we thus design the interface to present each

time a transcription of a lecture video and a deck of slides from the same lecture in

parallel. In the website, a human annotator first selects a slide page by clicking "<"

(previous page), or ">" (next page). Then the annotator clicks and drags on the

sentences he/she intends to align to the selected slide, and clicks on the "Add the

selected chunk" button to confirm the alignment. After the confirmation, sentences

aligned to different pages of slides are highlighted with different background colors,

which are listed on the rightmost side of the screen. For instance, in this figure the

first three sentences are aligned to the first slide, and the following 10 sentences are

aligned to the second. The interface also provides a "Clear your alignment" button

for annotators to clear confirmed alignment. Note that in this interface we do not

show the lecture video, because we intend to simplify the workflow of this annotation

task, and make our annotators focus on the transcription sentences.

We also design another website for annotating heterologous linking, and as an

example we show its screenshot in Fig. 3-6. In implementation we investigate two

mappings, i.e., lecture videos to discussion forum and videos to textbook, for the

heterologous condition; therefore, we also design the interface to present content of
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Figure 3-5: The website we build to collect homologous linking (i.e., the alignment
between lecture video transcription and slides).

videos and discussions (or textbook) side by side. As shown in the figure, in the upper

half of this website lecture videos from the entire course are presented. Annotators

can access these videos by clicking on the main title (which is a title shared among

several lecture videos, and presented in blue text here) and subtitle (which is a title

specific to each video, and presented in black text) of each video listed on the left

hand side of the screen. In addition to a lecture video, here we also provide the

aligned video transcription on the right and the thumbnails of aligned slides below

the video. The transcription is synchronized with the video based on the time code

extracted from the video subtitle file. The alignment between a video and its slides

is inferred from human annotation in the homologous task as well as the time code

of transcription sentences; we show this alignment information by rendering black

markers on the video scrubber, and each marker represents the beginning of a video

vignette that is aligned to one slide. As compared to the website for homologous

linking, here we present video along with many relevant materials (e.g., the aligned

slides and transcription) simultaneously, such that annotators can have a compre-

hensive understanding of each video vignette, which is the unit we work on in the

heterologous task.

In the lower half of this website, a discussion thread (or a textbook section) is
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“Link	vignette” bu)on	 Linked	vignettes	

List	of	main	2tles	and	sub2tles	of	videos	 Slide-alignment	markers	 Synchronized	transcrip2on	

Figure 3-6: The website we built to collect heterologous linking (i.e., the binary
classification task of deciding whether a pair of video vignette and discussion thread
or a pair of video vignette and textbook section is relevant).

shown to annotators. An annotator has to select the relevant video vignettes from

the entire course, and link these vignettes to the thread by clicking the "Link vignette"

button. Linked vignettes are also shown on the screen with text in cyan. Since a video

vignette 𝑣𝑖 can be defined by two markers (i.e., the marker representing the beginning

of a video vignette that is aligned to slide i and the next marker for slide i+1), the

annotator can simply select 𝑣𝑖 by dragging the video scrubber to any place between

the two markers.

We then recruit human subjects to annotate linking in our corpus with the two
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websites. In Stat2.1x, the linking between lecture videos and slides (homologous)

and the linking between videos and textbook (heterologous) are annotated; as for

6.00x, in addition to the two pairs of materials above, the linking between videos and

discussions is also labeled. For the statistics course, in order to expedite the develop-

ment process, we employ three annotators (including the author) who are graduate

students or postdoctoral researchers with expertise in statistics for the labeling. Each

annotator spent 5 hours in labeling the homologous task and 8 hours in the heterolo-

gous one. A majority voting is applied on the labeling results of the three annotators

to obtain the final linking annotation used in this thesis.

For understanding the consistency among annotators, we compute Cohen’s kappa

score [137] to measure the inter-annotator agreement. The kappa score can be written

as the following equation:

𝜅 =
𝑝𝑎 − 𝑝𝑐
1 − 𝑝𝑐

. (3.2)

In this equation, 𝑝𝑎 is probability of agreement among annotators observed in sam-

ples (i.e., in the corpus), and 𝑝𝑐 is the theoretical probability of chance agreement.

In Stat2.1x, the kappa scores are 0.867 and 0.599 for the homologous and heterolo-

gous task respectively. According to several arbitrary guidelines, these scores show

almost perfect and moderate agreement among annotators in the two tasks respec-

tively [76, 38]. Besides, the lower score in the heterologous linking also reflects that

the underlying task is more complicated than the homologous one.

As for 6.00x, one of our goals is to establish a more realistic pipeline with its

materials. Thus, instead of researchers, we choose to recruit online workers from AMT

for the homologous linking, and teaching assistants in both the edX and MIT offering

of 6.00x for the heterologous tasks. Online workers are employed here for homologous

linking since they are an economic choice for data annotation with satisfactory quality

[81], especially when the underlying task is simple. In contrast, we choose to recruit

teaching assistants for the heterologous task, because, in the designed annotation

workflow, annotators have to be familiar with the entire course before they can select

relevant videos for each discussion (or textbook section) efficiently. This task requires
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annotators to spend a much longer period of time to ramp up. However, since on

the crowdsourcing task-matching platform workers usually have thousands of tasks to

choose from at the same time, the returning worker rate is much lower as compared

to recruiting teaching assistants for annotation. The low returning rate means we

have to spend a large portion of time in training new workers to be familiar with the

content, and with a lesser portion of experienced workers yielding quality output.

We created a total of 945 HITs (i.e., Human Intelligence Tasks)1. on AMT for

aligning 105 video-slide pairs, with nine workers on each pair and a reward of $0.25 for

each HIT. 100 workers participate in the annotation; the mean and standard deviation

of total time spent for each worker are 35.5 minutes and 63.4 minutes respectively.

Majority voting over the nine labeling results in each pair of video and slides is also

taken to obtain the alignment used in this thesis.

For the labeling of 144 textbook sections to lecture videos, we recruited four teach-

ing assistants from the 6.00x course offered at MIT; the labeling of 1,239 discussion

threads was done by two teaching assistants from the MIT 6.00 course and five teach-

ing assistants from the edX version. Each section or discussion thread is labeled by

three different annotators for the majority consensus process. These annotators spent

7.5, 7.5, 5, and 3 hours in the textbook task, and 16, 14, 10, 10, 6, 6, and 2 hours for

labeling the forum. We pay these annotators at the rate of $45 per hour.

We also computed kappa scores for these annotations. For the video-to-slide,

video-to-textbook, and video-to-discussion linking, the scores are 0.810, 0.761, and

0.434 respectively. We are satisfied with these results because all of the scores also

show almost perfect or moderate agreement among annotators [76, 38]. Comparing

these numbers to the scores obtained in Stat2.1x, we find the online workers can

also yield consistent annotation as researchers do in homologous linking (cf. 0.810 vs.

0.867); annotators are more consistent in linking textbook to video sequence (cf. 0.761

vs. 0.599), presumably because the author of the textbook used in 6.00x is also one of

the lecture instructors. Therefore, it is easier to identify the related learning objects

1On AMT, each HIT is a self-contained task a worker can perform and receive a reward after
completing it
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from two material sequences. Besides, linking discussions is undoubtedly the most

complicated task since the learner-generated content is noisier and less organized than

educator-generated ones. This fact reflects on its lowest inter-annotator consistency.

Even so, the 0.434 kappa score still shows fair agreement among teaching assistants.

3.2 Presenting linking to learners

With the linking among course materials annotated, we then design an interface to

visualize the annotated relation while learners access the course content. Our ultimate

objective is providing learners guidance to make learning content more accessible and

to help them find supportive materials more efficiently when they are in need, such

as confused. After surveying relevant literature [67, 128, 143, 70, 101, 127, 44, 95],

we identify three high-level goals that inform our design.

Supporting relational navigation among materials. Many observations sug-

gest that, in the current MOOC platforms, it is difficult for learners to identify related

materials [128, 143, 101, 127, 44]. Thus many interactions cannot be achieved, such

as skipping redundant forum posts, or navigating from a specific point of lecture to

further discussions in forum and detailed explanation in textbook. To support these

needs of navigation, we leverage the annotated linking among learning materials. We

design our interface to visually illustrate the material relation. The visualization

guides learners and allows them to jump back and forth among relevant content.

Providing easy access to different conceptual pieces within a lecture

video. Previous research has shown that presenting videos along with sub-goals

helps people learn better, since the sub-goals can abstract away low-level details and

reduce the cognitive load of learners [67, 70, 95]. Since the lecture slides are usually

the skeleton of a lecture, and each slide can be interpreted as a conceptual piece or

a sub-goal of this lecture, we design the interface to visualize the alignment between

slides and videos. In this way, videos aligned to different conceptual pieces can be

accessed efficiently.

Minimizing distraction while providing guidance. The additional naviga-
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tion and guidance introduce new elements to the interface. Thus learners have to

learn about how to manipulate the new interaction, which is a distraction for learners

and can overload their cognitive system. Since the distraction has a negative effect

on learning [70], we also design our interface to minimize the disturbance. Specifi-

cally, we borrow many design decisions from mainstream MOOC platforms to make

interacting with our interface intuitive. In the following, we introduce our interface

and how we design it to achieve the three goals in detail.

In Fig. 3-7, a screenshot of the interface presenting content and linking simulta-

neously is shown. In the interface, there are four main components: key-term search,

material list, content presentation and linking visualization. To start interacting with

this interface, the user has to enter the topic he or she intends to learn in the search

field. Our server retrieves learning materials relevant to the entered topic by 1) stem-

ming the search query for query expansion, 2) enumerating n-grams (n equals one to

five) in the expanded query, 3) scoring each lecture video, slides, textbook section,

and discussion thread with the number of matched n-grams, and 4) returning the

materials with N (we set N to 60 in the following experiment) highest scores. We

provide a search tool in this interface, instead of simply presenting content of the

entire course, because search is a common and mature technique that helps users

narrow down candidate documents and obtain desired information.

The returned materials are listed based on their types (i.e., video, slides, textbook,

and discussion) and their original position in each material sequence (e.g., index of

chapter). The material sequence accessed by selecting the "video" tab (i.e., the

list of videos’ main titles and subtitles on the left hand side of the screen) is the

main flow, or the trunk, of returned content. In addition to videos, returned slides,

textbook sections and discussion threads (i.e., the leaves) are also attached to relevant

videos according to the linking annotation; orange, green, and pink icons for these

supplementary contents are appended to the titles of corresponding videos to illustrate

the available types of materials. The returned slides, textbook sections and discussion

threads that are not related to any videos are listed under the corresponding tabs next

to the "video" tab.
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Tabs	for	different	material	types	 Search	tool	

List	of	main	7tles	and	
sub7tles	of	lecture	videos	

Icons	indica7ng	available	
types	of	linked	materials	

Synchronized	video	
transcrip7on	

Materials	linked	to	the	
lecture	video	(each	block	
is	synchronized	to	the	
video	progress	bar)	

Figure 3-7: The implemented interface to present learning content and linking infor-
mation simultaneously. In this interface, course materials are retrieved by entering
queries in the provided search tool. The retrieved materials are listed according to
their types (in the top left corner of this screenshot) and their original positions in
each material sequence (e.g., lecture or chapter indices). Titles of listed materials are
shown on the left hand side, and content selected from the list is in the middle. If the
selected content is a video (i.e., the trunk), linked supplementary objects (i.e., the
leaves) are also displayed as orange, green, or pink blocks under the video scrubber.

Considering the learnability, we design the layout of the interface to resemble

the arrangement in most prevalent MOOC platforms such as edX. By borrowing the

design decisions made by the professional user experience teams in these platforms,

we are able to make our interface intuitive. The intuitiveness allows learners to

concentrate on learning the content, instead of learning how to use the website. This

fact can not only enhance learning experience, but also reduce noise when we measure

how linking affects learning in a user study. Besides, we choose to preserve the original

flow of materials when presenting returned content, instead of listing materials by

their relevance scores. Preserving the original flow allows us to visualize the context
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Figure 3-8: By clicking on any of the colored blocks under video scrubber, content
of the linked supplementary object represented by this clicked block will be rendered
in a lightbox. In this figure, we provide an example illustrating how a linked slide is
displayed in our interface after its corresponding block was clicked.

and prerequisite dependency among returned materials, which is crucial for achieving

meaningful learning [6].

After selecting a video from the list, the learning content along with linking infor-

mation is shown in the middle. As illustrated in the figure, a lecture video and the

synchronized transcription are presented. Under the video scrubber, several orange,

green, and pink blocks are rendered. These colored blocks are synchronized with

the video progress bar. Each colored block corresponds to one linked supplementary

object (i.e., one slide, one textbook section, or one discussion thread), and the span

of the block represents the video vignette that is linked to the underlying object. As

shown in Fig. 3-8, by clicking each colored block the corresponding object will be

displayed in a lightbox. As for the returned slides, sections, and threads that are not

linked to any video, learners can also access the content by selecting material title

from the list under the corresponding tab; resulting content will also be displayed in

the middle of the website.

We surmise that this interface can enhance learning experience by helping learners

access relevant information and identify underlying sub-topics of videos. As compared
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to a conventional video player where only the video scrubber is provided, the syn-

chronized object identifiers serve as recommendation that might be useful for learners

at different points in their learning path. For instance, if a learner is watching a lec-

ture video and he/she is confused at a specific point in the video, with our interface

this learner can access easily the detailed explanation in the textbook from linking

attached to this video vignette; if the learner wants to learn more about a concept

mentioned at some point in the video, the linked forum threads might provide fur-

ther discussions. Furthermore, since relevant materials are linked and placed together

under the video scrubber, it is easier to identify redundant learning content, such as

duplicated questions in the forum; therefore this interface can make navigation much

more efficient.

Additionally, the lecture slides are typically the skeleton of a lecture; each slide

can be interpreted as a sub-topic or a sub-goal in the lecture. Thus, by aligning slides

to a lecture video, we divide the video into several conceptual pieces, where each piece

corresponds to one sub-goal or sub-topic. In the designed interface, the alignment

is visualized. Hence learners can visually identify the structure of the lecture, and

navigate to different sub-topics easily.

The remaining part that should be discussed is how to obtain the synchronized

object identifiers below the video scrubber. As shown in Fig. 3-9, this can be done

easily with the linking annotation described in Section 3.1. With the time code

extracted from the video subtitle file, for each supplementary object we can obtain

the beginning and ending time code for the segment of transcription sentences that

is linked to this object. The video player with the synchronized linked objects can

then be rendered with the time information.

3.3 Comparative study

To answer the research question "if we are able to link course materials with human

assistance, would it help learners?", we assessed the learning effect of presenting

linking to learners. Specifically, we conducted a comparative study, in which we
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Segments		 2 3	 5	 7	6	4	1

Labels	(linking	to	slides)	 A	 B	 -	 C	-	B	

Labels	(linking	to	textbook)	
α	
β	

Y	 Y	 N	 N	N	Y	Y	
N	 N	 N	 N	N	N	N	

Labels	(linking	to	discussions)	

a	
b	
c	 Y	 N	 N	 N	N	N	Y	

Y	 N	 N	 Y	N	N	Y	
N	 Y	 N	 N	N	Y	N	

d	 N	 N	 N	 N	N	N	N	

A	 						Segment	index							Time	code	
						Segment	1 	0:00	–	0:30	
						Segment	2 	0:30	–	1:25	
						Segment	3 	1:25	–	1:40	
						Segment	4 	1:40	–	2:45	
												…	
						Segment	7 	4:05	–	4:46	
	

0:00	–	1:25	 1:25	–	2:45	 4:05	–	4:46	

Figure 3-9: With the annotated linking from video segments (i.e., sentences or vi-
gnettes) to slides, textbook, and discussions, as well as the time code of each segment,
the synchronized linked objects under the video scrubber can be rendered. In this
example, each page of slides is indexed with A, B, and C; each textbook section is
indexed with 𝛼, 𝛽, and so on; each discussion thread is indexed with a, b, c, and so
on.

presented experimental subjects with interfaces with or without linking, and measured

their performance on designed learning tasks. We focused our study on three aspects:

∙ How do learners search for desired learning content when linking is presented?

∙ How does linking affect learners in integrating and memorizing information

within a fixed period of time?

∙ How does linking affect different cohorts of learners?
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3.3.1 Study design

We adopted a between-subjects design for our study, where each learner was randomly

assigned to either the linking interface (i.e., the interface described in Section 3.2)

or a baseline interface that stripped off all inter-material relations from the linking

interface. We will introduce the baseline interface in detail in Section 3.3.2.

We designed two learning task scenarios, "information search" and "concept re-

tention," for learners to perform with their assigned interface. Learners’ performance

in these tasks was analyzed to investigate the learning effect of linking around the

three aspects described above.

∙ Information search tasks involved finding corresponding learning content to

a given problem. In each of these tasks, a learner is randomly assigned to a

problem sampled from the courses’ quizzes. This learner then has to use the

assigned interface to find a piece of learning content that explains how to solve

the problem. A learning content piece can be a specific moment in a lecture

video, a page of slides, a textbook section, or a discussion thread (only in 6.00x).

This scenario emulates a situation where a learner attempts to find informative

content while he/she faces a problem.

∙ Concept retention tasks require learners to remember, understand, and in-

tegrate concepts relevant to a given topic. In each task, we randomly gave a

learner a topic sampled from the courses, and gave 10 minutes for this learner

to learn about the topic with the assigned interface. After the learning stage

we asked this learner to write a short essay that includes as many concepts

as he/she can remember as possible. In the writing stage, this learner is not

allowed to access the interface and learning content. We set the time limit in

order to evaluate how efficiently learners can browse through the materials, as

well as capture and remember the high-level information. This scenario emu-

lates the condition where learners attempt to have an integral and high-level

understanding of a topic with a limited amount of time.
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Typically, researchers may want to apply intervention straight in a course, so

that they can measure directly the effect of intervention. In contrast, in this thesis

we choose to focus our investigation around the two designed learning scenarios, and

explore learners’ navigation behavior. We made this decision because learning involves

complicated mental processes from motivation and memorization to understanding

and problem solving. It may be too elusive to ascertain all of these processes in one

set of experiments. Exploring the effect of linking in a course may introduce too

many variables and noises, and obfuscate the advantage brought by the intervention.

Therefore, as suggested in previous study [61], we concentrate our investigation on

how linking can help material navigation. If we are able to show a positive effect of

linking in this subset of learning processes, with the abundant literature discussing

the correlation between navigation and learning [67, 143, 70, 101, 95, 145], the benefit

of linking in learning is self-evident.

For these two scenarios, we sampled 10 problems and topics respectively in each

of the two MOOCs (i.e., Stat2.1x and 6.00x) we investigated. In the sampling we

emphasize the first half of each of these two courses, because lectures from the latter

are usually more advanced, complicated and required prerequisite knowledge learnt

earlier in the course. With the emphasis on foundational lectures, we attempt to

reduce noise introduced by diverse prior knowledge learners may have. In Fig. 3-10,

we show two sampled problems from each of the MOOCs along with examples of

learning content pieces we accept as answers. In Fig. 3-11, two examples of sampled

topics along with one learner’s submission respectively are given. Concepts in these

submitted essays are highlighted in bold font. We list the entire sets of sampled

problems and topics for each MOOC in Appendix ?.

3.3.2 Baseline

In the comparative study, we have to implement a baseline interface, and investi-

gate whether assigning learners with either baseline or linking interface affects their

performance in accomplishing tasks. Thus, we design the null interface.

In Fig. 3-12, a screenshot of the null interface is shown. In this interface the
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Figure 3-10: The first row shows two sampled problems used in the information search
learning scenario. For each of the problems, a piece of learning content that is accepted
as the answer is shown in the second row; a textbook section (the content with title
"The Range, IQR and SD")) and a page of slides (title: "Types of Exceptions") is
displayed respectively. In this figure, the left hand side is a problem-answer pair for
Stat2.1x and the right is from 6.00x.

only difference is that the visualization is not presented. The visual layouts as well

as components for key-term search, material list, and content presentation that are

designed in the linking interface are retained. As illustrated in this figure, in the null

interface users also start by entering search queries; then the retrieved materials are

also listed according to their types (i.e., the panels of material types listed in the

top left corner) and their original positions in each material sequence (e.g., lecture

or chapter indices, as shown on the left hand side of the figure); the learning content

selected from the sequence is rendered in the middle. However, every material type

is presented independently and no relational information is provided, e.g., the linked

supplementary objects (or the leaves) are no longer rendered under lecture videos
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Correlation is a measure of linear association: 
how nearly a scatterplot follows a straight line. Two 
variables are positively correlated if the 
scatterplot slopes upwards (r > 0); they are 
negatively correlated if the scatterplot slopes 
downward (r < 0). Correlation is a measure of 
association, not causation. 

Computational complexity is a theory that 
classifies computational problems based on their 
difficulty. Programmers try to increase a programs 
conceptual complexity to reduce the 
computational complexity. Asymptotic notation 
gives a way to talk about the relationship between 
running time of an algorithm and its inputs. It 
becomes less efficient the longer the input. There 
are many important classes of complexities: 
constant, logarithmic, linear, log-linear, 
polynomial, and exponential. Constant is 
independent of inputs. Log-linear is product of 2 
items which are both dependent on the size of the 
inputs. 

Figure 3-11: The first row shows two sampled topics used in the concept retention
scenario. For each topic, an essay submitted by a learner in our user study is also
shown as an example. We also highlight concepts in essays in bold font. In this figure,
the left hand side is a topic-essay pair for Stat2.1x and the right is for 6.00x.

(i.e., the trunk). By comparing linking to this null interface, we can investigate

how offering learners the information of relation among learning content affects their

behavior.

3.3.3 Experiment subjects

As for experimental subjects, we chose to recruit online workers from AMT [99].

Generally, we may want the subject pool to be learners who are actually taking the

course. However, in our case, online workers are a good approximation to enrolled

learners, because we measure their microscopic behavior in accomplishing specific

learning tasks where clear instruction is provided. In these tasks, online workers

have very similar goals as learners, such as finding desired information as quickly

as possible or learning more high-level concepts within a limited amount of time.

Therefore, they interact with our interface much like enrolled learners do. Besides,

although these workers are monetarily driven, as shown in the following quote from
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Figure 3-12: The implemented null interface that serves as one of our baselines. This
interface still includes the same components for key-term search, material list, and
content presentation as the linking interface does. The layout and visual design are
also kept identical. The only difference is that we strip away the linking visualization,
and there is no synchronized supplementary learning object under each lecture video
(i.e., the trunk).

a worker’s feedback.

"I really like this HIT. I hope I am doing them well for you as intended.

I want to thank you as well, because I’m actually learning quite a bit

about computer programming and I really like the lectures and how they

are organized, every time the 10 minutes are up, I’m kind of disappointed

because I feel like I was just getting started learning about a subject I’m

interested in."

Our HITs also motivate workers intellectually, and attract many who want to learn

about the two courses. Moreover, performing a live experiment in an actual MOOC

is expensive and time consuming. In contrast, the abundant online labor pool and

the diverse demographics of workers ensure that we can access users of various back-

grounds at large scale, and simultaneously with reasonable cost in time and money.

This fact allows us to investigate the third focused aspect, "how linking affects differ-

ent cohorts of learners," to understand the usefulness of the proposed framework in a
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Table 3.1: Summarization of sizes of comparative study in Stat2.1x and 6.00x.
Number of tasks Number of unique workers
Stat2.1x 6.00x Stat2.1x 6.00x

Information search 2,000 2,000 497 393
Concept retention 2,000 2,000 751 631

heterogeneous learner body. With all the upsides, we thus choose these micropayment

online workers as our experimental subjects.

3.3.4 Experiment scale

In Table 3.1, the scale of our experiment is summarized. In Stat2.1x, for each scenario

we deployed 2,000 HITs on AMT, i.e., two interfaces (null and linking), 10 problems

or topics, and 100 HITs accomplished by 100 unique online workers for each pair of

problems/topics and interface. The reward of each HIT is $0.35 and $1.00 for the

information search and concept retention scenario respectively. As listed in the table,

a total of 497 and 751 unique AMT workers participated in each of the two scenarios.

These numbers are different from 2,000 because we allowed each worker to solve more

than one problem or topic (in contrast each subject can only work with one assigned

interface under the between-subject design). The experiment took four months to

complete.

The scale of experiment in 6.00x is also shown in the table. Here 2,000 HITs were

also deployed for each scenario. In the two scenarios, 393 and 631 workers participated

respectively. Observing the slow complete rate of the experiment in Stat2.1x, we

increased the reward of each HIT to $1.50 and $2.00 for the two scenarios. Since the

involved topics are more complicated in 6.00x, the potential and qualified workers for

our tasks are fewer. This is another reason why we decided to provide larger monetary

incentive. This experiment took two and a half months to complete.
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3.4 Results

With the experimental setup and deployment described above, we then measure sub-

jects’ performance in accomplishing learning tasks, to explore the effect of linking

on learning from three aspects (i.e., how does linking affect search, affect integrating

or memorizing information, and affect different cohorts). For studying how link-

ing affects various cohorts of learners, in our tasks we also require subjects to fill

in a background survey. Based on information the subjects provided in the survey,

we tease out three demographic factors that may influence their performance - their

highest accomplished degree, their previous experience in online courses, and previous

exposure to relevant topics/courses.

To study the effect of these factors, we divided subjects with three different criteria

(i.e., whether or not they have had exposure to statistics or Python programming

language, have taken MOOCs previously, and have at least a bachelor’s degree). In

Table 3.2, we list the numbers of completed tasks classified by each criterion for each

learning scenario (i.e., information search and concept retention) and interface (i.e.,

null and linking) in the study of Stat2.1x. As we can see here, about seven out of ten

and six of ten of the participants in the two scenarios reported that they have some

prior knowledge in statistics (the second and third row of the table); only about a

quarter of subjects in these scenarios have attended some MOOCs before (the fourth

and fifth row of the table); slightly more than half of the participants have a bachelor’s

or higher degree (the sixth and seventh row of the table). We also broke down the

completed tasks in 6.00x and summarized the result in Table 3.3. The data shows that

we have slightly more tasks contributed by subjects with previous exposure to MOOCs

and with at least a bachelor’s degree, but less tasks completed by subjects with

experience in the course topics (i.e., the Python programming language). On top of

these divisions we measure learning performance among each cohort to investigate the

effect of linking on search behavior as well as integrating and memorizing information.
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Table 3.2: Number of tasks completed by each cohort for each learning scenario (i.e.,
information search and concept retention) and interface (i.e., null and linking) in the
study of Stat2.1x.

Information search Concept retention
null linking null linking

Overall 1,000 1,000 1,000 1,000

Statistics Yes 714 704 594 597
No 286 296 406 403

MOOCs Yes 295 249 205 287
No 705 751 795 713

≥Bachelor Yes 573 522 549 519
No 427 478 451 481

Table 3.3: Number of tasks completed by each cohort for each learning scenario (i.e.,
information search and concept retention) and interface (i.e., null and linking) in the
study of 6.00x.

Information search Concept retention
null linking null linking

Overall 1,000 1,000 1,000 1,000

Python Yes 455 536 443 409
No 545 464 557 591

MOOCs Yes 384 397 319 315
No 616 603 681 685

≥Bachelor Yes 607 623 617 540
No 393 377 383 460
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Table 3.4: Learner performance in the information search scenario in the study of
Stat2.1x. Performance is evaluated by the average searching time and average accu-
racy metrics, and measured within various cohorts using different interfaces.

Average searching time (seconds) Average accuracy (%)
null linking null linking

Overall 206 152 69.2 69.5

Statistics Yes 166 147 71.1 70.5
No 295 160 64.9 67.1

MOOCs Yes 166 139 72.0 70.6
No 225 154 68.2 68.9

≥Bachelor Yes 198 163 70.7 70.6
No 208 136 67.5 68.5

3.4.1 How linking affects search

In this section, we investigate learners’ performance in the information search sce-

nario. Here, we computed two metrics: average searching time and average accuracy.

The first metric evaluates how fast each subject identified a piece of learning con-

tent (i.e., a specific moment in a lecture video, a page of slides, a textbook section,

or a discussion thread) as answer to the assigned problem and submitted HIT; the

second metric measures whether the identified content can indeed answer the prob-

lem. To measure the accuracy, for each problem the learning content pieces that are

valid answers are labeled. In Stat2.1x, three annotators who are graduate students

or postdoctoral researchers with expertise in statistics did the labeling; as for 6.00x,

we recruited three teaching assistants from the same class offered at MIT to obtain

the annotation. One thing to be noted is that, when a worker identified a specific

moment in a lecture video as the answer, we accept this submission as correct only

if it deviates from any of our labeled answers by less than one minute. With these

metrics, we attempt to understand how linking affects learners’ behavior when they

are trying to find learning content.

Table 3.4 summarizes learner performances in the information search scenario

in the study of Stat2.1x. Performance is evaluated by the average searching time

(columns 1 and 2) and average accuracy (columns 3 and 4) metrics, and measured

within cohorts having various backgrounds (row 1 for overall subjects; rows 2 and
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3 for whether subjects have prior knowledge in statistics; rows 4 and 5 for whether

subjects have attended MOOCs before; rows 6 and 7 for whether they have at least

a bachelor’s degree) and using different interfaces (columns 1 and 3: null ; columns

2 and 4: linking). As mentioned above, experiments based on online workers suffer

from spammers. To control the quality of workers’ submissions, in each learner cohort

we discard submissions with top and bottom 5% search time. This mechanism can

filter cases such as workers trying to cheat on the system by randomly selecting a

piece of learning content, or workers leaving their computers during tasks.

To examine how providing linking information affects learners in search, we focus

on the performance difference between subjects using each of the interfaces. These

differences are plotted in Fig. 3-13. For consistency, the length of each bar represents

the improvement of a given metric when deploying the linking interface as compared

to deploying the null. Thus, the upper panel corresponds to the average time using

null interface subtracted by the time using linking. In contrast, the lower panel is

computed by subtracting the accuracy when using null from the accuracy when using

linking. In the figure, learner cohorts are aligned in the same order as in the table. In

addition to the values of differences, the 95% confidence intervals are also presented.

Furthermore, the differences that are statistically significant (we adopt a one tailed,

two-sample t-test for the average search time and a one-tailed, binomial proportion

test for the average accuracy; significance level is set to 0.05) are marked with red

asterisk.

Focusing first on row 1 of Table 3.4, as well as the first bar in the upper and

lower panel of Fig. 3-13, we see that the overall search time is reduced by 36% (or

54 seconds) when using the linking interface (cf. 206 vs. 152), and this reduction is

statistically significant. In contrast, there is no significant difference in task accom-

plishing accuracy for using the two interfaces. The result shows that subjects can

search for desired information much faster without sacrificing search accuracy, and

it provides evidence to our surmise that the linking framework benefits educational

content navigation.

Table 3.4 and Fig. 3-13 also include individual results for the three demographic
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Figure 3-13: The improvement in search time (upper panel) and accuracy (lower
panel) when linking interface is used. Learning performance improvement is measured
in the study of Stat2.1x. The 95% confidence intervals (shown as error bars) and
significance test results (marked with red asterisk if the difference is statistically
significant) are also provided.

groups. In all of the six cases the linking interface yields less search time (with a

reduction from 19 seconds to 135 seconds), and the time reduction is statistically sig-

nificant in four out of the six cases, i.e., subjects without prior knowledge in statistics,

without prior exposure to MOOCs, and with/without a bachelor’s degree or higher.

To interpret these results, we can classify subjects who are less familiar with the

course materials, less experienced with MOOC, and less educated as naïve learners.

This is because subjects with less familiarity have to take more time and effort to fill

the holes of prerequisite knowledge before they can understand a new topic. MOOC

learners tend to be self-learners and desire to constantly enrich themselves with learn-
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ing by utilizing any available resource. In contrast, subjects with no experience in

MOOCs are more likely to be passive learners or less comfortable with learning from

online materials. As for educating, its purpose is not only to teach students specific

knowledge, but also to teach how to learn. Thus, there is a higher chance that less

educated subjects have less experience in learning.

In the results we can observe that the linking interface yields greater time reduc-

tion for novice subjects. This is perhaps not surprising. As pointed out by Kirschner

et al. [70], due to the lack of learning experience and comprehensive understand-

ing of the underlying course topics, typically novice learners cannot properly explore

learning content on their own. Without providing guidance to these learners, their

cognitive system can be overloaded by new topics they have to learn and prerequi-

site knowledge holes they have to fill; thus, they are more likely to feel frustration

and struggle. As compared to the baseline, our linking interface visualizes the linking

among pieces of learning content, supports relational navigation among materials, and

provides easy access to each sub-goal or sub-concept within a lecture video. These

features serve as various guiding functions and help learners navigate through learn-

ing content. Therefore, learners can find information more efficiently, and greater

improvement is observed in novices since they are those learners who are more likely

to struggle, need more support, and can benefit more from the guidance.

As for the search accuracy, although the performance difference between the two

interfaces varies from -1.4% to 2.2% in various cohorts, none of these discrepancies is

statistically significant. Our results indicate that in this experiment linking has little

impact on task accuracy. This could be due to the fact that the difference between

the two interfaces is about whether the inter-material relation is visualized or not,

and the two interfaces are built upon the same set of learning content as well as

identical search mechanism. Since Stat2.1x is a rather small MOOC that contains

only 7-hour lectures spanning 5 weeks, and we only use a limited set of materials (i.e.,

videos, slides, and textbook) to build this minimum viable product, it is achievable for

learners to find correct pieces of learning content with reasonable time and patience.

From these results in the study of Stat2.1x we conclude that, by having the ed-
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ucational content linked and visualizing the inter-material relation with our linking

interface, learners can find desired information more efficiently without sacrificing the

search correctness. Moreover, among the studied cohorts of learners, novices can ben-

efit more from the provided guidance. These observations show one of the possible

ways that linking can help learning.

With the encouraging result, we further expand the horizon of study by exploring

another MOOC, 6.00x. Since learning is dependent on the course subject, with the

study in 6.00x we attempt to investigate whether the benefit of linking shown above

is topic-dependent, or the improvement could be a more general fact. If we can

provide evidence showing that linking can yield similar improvement in some learning

factors with a different course, it is stronger proof for the benefit of linking to be

generalizable to various topics. Additionally, in the study of 6.00x we also attempt

to evaluate our linking framework in a more realistic condition. Thus, here materials

from online forums are also provided in the interfaces; data annotation (the linking

among materials and the correct pieces of learning content for each problem in the

user study task) is done by teaching assistants instead of researchers themselves.

Table 3.5 summarizes learner performances in the information search scenario in

the study of 6.00x. Similar to the study of Stat2.1x, performance is evaluated by

the average searching time (columns 1 and 2) and average accuracy (columns 3 and

4) metrics. These metrics are measured within cohorts having various backgrounds

(rows 1 to 7) and using different interfaces (columns 1 and 3: null ; columns 2 and 4:

linking). We employ similar dividing criteria for the background (i.e., prior knowl-

edge, experience in MOOCs, and highest degree). Besides, the same quality control

mechanism (i.e., discarding submissions with top and bottom 5% search time) is

utilized to minimize the noise from spammers.

To examine the benefit brought by linking, here we also focus on the performance

difference when various interfaces are deployed, and plot the differences in Fig. 3-14.

Similar to the study in Stat2.1x, values of the bars in this figure represent the time

reduction (upper panel) and accuracy increase (lower panel) achieved by deploying

the linking interface. Improvement in different cohorts is also displayed in the same
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Table 3.5: Learner performance in the information search scenario in the study of
6.00x. Similar to the study above, performance is evaluated by the average searching
time and average accuracy metrics, and measured in various cohorts using different
interfaces.

Average search time (seconds) Average accuracy
null linking null linking

Overall 443 349 87.7 89.5

Python Yes 419 323 90.3 90.3
No 463 378 85.6 88.6

MOOCs Yes 427 336 88.0 89.4
No 454 357 87.6 89.5

≥Bachelor Yes 472 359 89.5 91.5
No 399 331 85.1 86.2

order as in the table. Besides, the 95% confidence intervals (the error bars) as well

as whether the differences are statistically significant (marked with red asterisk if

significant) are also indicated.

From Table 3.5 and Fig. 3-14, the first thing we can observe is that when the

linking interface was deployed, each cohort of experimental subjects took significantly

less time in accomplishing the tasks. As for the accuracy of completed tasks, a

statistically significant improvement from the linking interface is found in the entire

group of subjects, subjects without prior experience in Python language, subjects

without prior exposure to MOOCs, and subjects with at least a bachelor’s degree.

No significant difference is measured in the other cohorts.

The observations show that our previous conclusion, that, when linking is pre-

sented, learners can find desired information more efficiently without sacrificing search

correctness, can be reached in the study of a different course. This result strengthens

our claim that the idea of linking benefits learning. In addition, we actually see im-

provement in search accuracy here in several cohorts. This presumably results from

an increased amount of learning materials available. In 6.00x the length of the course

is three times greater than the length of Stat2.1x, and the discussions are also avail-

able for learners. We hypothesize that when learners have more material to navigate

through, visualizing the relations between materials will have a larger effect on their

ability to find information.
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Figure 3-14: The improvement in search time and accuracy when the linking interface
is deployed. Learning performance is measured in the study of 6.00x. The 95%
confidence intervals and significance test results are also provided.

To validate this conjecture, we conducted a regression analysis between search

time used in tasks and the accuracy improvement from linking. It would support our

hypothesis if we can find evidence showing that when learners spent longer on their

tasks, the linking interface yielded larger accuracy improvements (note that in the

study here subjects spent twice as much time as the time they used in the study of

Stat2.1x). We design the regression analysis by first sorting each of the 1,000 tasks

in the null group and in the linking group separately according to the search time.

Each set of tasks is then divided into 10 equal sized batches from tasks using the least

amount to the most amount of time. We average the search time over the 𝑖𝑡ℎ batch of

the two sets (i.e., tasks using null or linking) as the value of the independent variable
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Figure 3-15: The first order regression model (dashed line) relates the average search
time (in seconds) of task batches (horizontal axis) to the accuracy improvement
yielded by deploying the linking interface (vertical axis).

of sample 𝑖 in the regression; we subtract the accuracy of the 𝑖𝑡ℎ batch of tasks using

the 𝑛𝑢𝑙𝑙 interface from the accuracy of the 𝑖𝑡ℎ batch using 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 as the value of the

dependent variable.

The result of our regression analysis is plotted in Fig. 3-15. Clearly our regression

model has a positive slope, which shows that search time and improved accuracy are

positively correlated. This observation supports our previous conjecture. However,

we must note that the 𝑝-value of a hypothesis test that the slope is positive is 0.17,

which is higher than the usually used significance level of 0.05.

The second observation that can be made from Table 3.5 and Fig. 3-14 is that both

naïve and advanced learners benefit from the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface in terms of reduced

task completion time. We believe this finding is related to the subject matter in

the user study. 6.00x covers a wide range of advanced topics such as algorithms,

complexity, computational problem solving, and Python language programming. As

compared to Stat2.1x, the statistic course contains material which is typically taught

systematically in a high school class, most people are usually familiar with only part

of the topics in 6.00x. For instance, a computer scientist might know algorithms and

theory of computation but might not use Python; a data analyst might be familiar

with using Python to analyze data, but might not be an expert in algorithms. Thus,
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some subjects classified as advanced learners based on our categorization could be

beginners in the topics used in some of the learning task2. Hence we believe this may

be why a more uniform improvement over cohorts is observed.

In conclusion, the results in the study of 6.00x provide more evidence supporting

the benefit of linking in learning. With the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface, learners can also find

desired information faster. The improvement in learning performance is observed in

both search time and accuracy, and in more cohorts of subjects. These results also

imply the potential of applying linking to various course subjects for better learning.

In section 3.5, we will analyze learners’ click-through patterns in order to provide

more understanding and examples about why linking yields better performance, but

in the next section, we will first attempt to analyze the benefit of linking from another

measure: information memorization.

3.4.2 How linking affects information memorization

As compared to "finding the desired information", concept retention is a more com-

plicated scenario involving searching, integrating, and memorizing knowledge. In

this section we investigate whether linking can enhance learners’ performance in this

complex condition. To evaluate the performance we compute one metric: number of

unique key-terms. This metric measures the information richness in the paragraphs

submitted by subjects, and thus it reflects how many concepts relevant to the as-

signed topic learners can retain after a fixed-length learning stage. We adopt a rather

simple metric (as compared to other metrics that evaluate and grade essays [141]) and

inform subjects how their submissions will be evaluated, in order to give learners a

concrete goal and simplify the learning tasks. We attempt to tease out from the tasks

the factors that are not closely related to material navigation (e.g., the fluency or

2This can be illustrated with some feedback we received in this user study. One said, "I was
already familiar with most of the concepts except for dynamic programming and program complexity.
I was a computer science major 30 years ago. Back then they were teaching IBM 360/370 assembly
language and FORTRAN 77. I code now in C, Python, PHP, SQL, shell scripts and elisp for my own
little projects now and again, although those are too small to warrant much attention for dynamic
or complexity considerations." Another participant mentioned, "I already know much about Python,
but I find out new things doing these! I don’t think I ever really understood the use of recursion until
I completed this task."

75



Table 3.6: Learner performance in the concept retention scenario in the study of
Stat2.1x. Performance is evaluated by the number of unique key-terms in submitted
essays and measured within various cohorts using different interfaces.

Number of unique key-terms
null linking

Overall 4.39 4.91

Statistics Yes 4.71 5.11
No 3.98 4.60

MOOCs Yes 4.83 5.14
No 4.27 4.77

≥Bachelor Yes 4.73 5.23
No 3.98 4.60

wording in the essay). Furthermore, other complicated metrics are usually subjective

and hard to be generalized to various domains (e.g., requiring many manually graded

essays for an automated grading algorithm to learn from), and thus they do not align

with our purpose.

For computing our key-term metric, we only need to label a set of relevant terms for

each topic used in the concept retention scenario. For the labeling, we first designate

the glossary in each textbook used in Stat2.1x and 6.00x as the set of candidate terms.

The same annotators recruited in Section 3.4.1 (i.e., the information search scenario)

were also asked to label the relevant topics for each term in the candidate set. With

the annotation, we can compute the metric simply by counting how many terms were

covered in the essay (since multiple words can sometimes refer to the same word stem,

e.g., cats, catty, and cat, in practice we first conduct word stemming [40] to reduce

the derived or inflected words in the essay to their word stem before counting the

key-terms). This metric allows us to understand how linking affects learners when

they are trying to acquire and remember high-level information about a topic.

Table 3.6 summarizes learner performances in the concept retention scenario in

the study of Stat2.1x. Performance is evaluated by the number of unique key-terms

contained in submitted essays. As in the information search scenario, the evaluation

is also computed within cohorts having various backgrounds (rows 1 to 7) and using

different interfaces (column 1: 𝑛𝑢𝑙𝑙; column 2: 𝑙𝑖𝑛𝑘𝑖𝑛𝑔). We found that there are
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Figure 3-16: The improvement in the number of unique key-terms contained in sub-
mitted essays when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface is used. Learning performance is measured in
the study of Stat2.1x. The 95% confidence intervals and significance test results are
also provided.

workers trying to cheat on the tasks by copying and pasting paragraphs they found

online (e.g., Wikipedia) in their essays. Therefore we utilized an open online pla-

giarism checker [22]. This checker segments paragraphs to be checked into sentences,

searches these sentences on Google, and reports plagiarism if some highly similar doc-

uments are found on the Web. With this checker, we identify the spammers, reject

their results, and control the quality of the experiment.

To focus on the performance difference when various interfaces were deployed, we

also visualize the improvement from the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface measured in each subject

cohort in Fig. 3-16. That is, the length of each bar represents the average number of

unique key-terms when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 is deployed subtracted by the number when 𝑛𝑢𝑙𝑙 is

used. Additionally, the 95% confidence intervals (the error bars) as well as whether

the differences are statistically significant (marked with red asterisk if significant) are

also indicated. Here, we adopted a one tailed, two-sample t-test for significance test

and set the significance level to 0.05.

The first row of Table 3.6 and the first bar in Fig. 3-16 show that, overall, subjects

are able to mention a greater number (12%) of key-terms when using the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

interface (cf. 4.39 𝑣𝑠. 4.91), and the difference is statistically significant. Looking

77



over the rest of Table 3.6 and Fig. 3-16, we observe that there is a similar trend to that

in the information search scenario, where the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface yields improvement

over each cohort of subjects, and in four out of the six cases (i.e., subjects with no

prior knowledge in statistics, without prior exposure to MOOCs, and with/without

a bachelor’s degree or higher) the differences pass the significance test. Furthermore,

it seems that the novices also benefit more from linking than advanced learners (e.g.,

all the three naïve cohorts show statistically significant improvement).

These results reveal another aspect of benefit linking may provide. In the course

materials, there are usually many learning pieces relevant to a topic; some of them

are complementary and some might be redundant. With the visualized inter-material

relation, complementary content can be identified easily and thus be better utilized

to reinforce learning. For example, while watching the lecture video, subjects can

refer to the aligned slides to understand the lecture at the concept level, as well

as to the linked textbook sections or posts for detailed discussions. The identical

learning content can also be skipped easily. Furthermore, the visualization helps

learners better plan their learning path within the limited-length learning session,

and avoid exploring irrelevant or secondary content to the assigned topics. These

features made possible by visualizing linking can also be interpreted as the guidance

which leads learners navigating through learning content when accomplishing assigned

tasks. Therefore, subjects, especially novices, can access knowledge more efficiently

in the learning session, and retain more key-terms when they write down what they

can remember. In section 3.5 we will provide more evidence to our claim here.

We also investigated whether this aspect of benefit can be generalized to vari-

ous course subjects in a more realistic condition. Hence, similar to the information

search scenario, we further studied a different MOOC, 6.00x, as well as explored in

an expanded material set (i.e., forum discussions were additionally used) and data

annotation pipeline (i.e., teaching assistants were recruited as annotators).

Table 3.7 summarizes learner performances in the concept retention scenario in the

study of 6.00x. Similarly, performance is evaluated by the average number of unique

key-terms in the submitted essays, and measured within various cohorts (rows 1 to
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Table 3.7: Learner performance in the concept retention scenario in the study of
6.00x. Similar to the study of Stat2.1x, performance is evaluated by the number
of unique key-terms in submitted essays and measured within various cohorts using
different interfaces.

Number of unique key-terms
null linking

Overall 8.07 8.56

Python Yes 8.64 9.09
No 7.64 8.20

MOOCs Yes 8.37 8.55
No 7.93 8.56

≥Bachelor Yes 8.60 9.13
No 7.21 7.91

*	

*	

*	

Figure 3-17: The improvement in the number of unique key-terms when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interface is deployed. Learning performance is measured in the study of 6.00x. The
95% confidence intervals and significance test results are also provided.

7) using different interfaces (column 1: 𝑛𝑢𝑙𝑙; column 2: 𝑙𝑖𝑛𝑘𝑖𝑛𝑔). In this study, the

same quality control mechanism using plagiarism checking is employed to filter out

the noise from spammers. Furthermore, to focus on the benefit brought by linking,

in Fig. 3-17 we plot the performance difference when various interfaces were deployed

(i.e., number of key-terms when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 is assigned subtracted by the number when

the 𝑛𝑢𝑙𝑙 interface is used). In addition to the differences, the 95% confidence intervals

(the error bars) as well as the significant test result (marked with red asterisk if

significant) are also indicated in the figure.
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From Table 3.7 and Fig. 3-17, first we can observe that when the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface

was deployed, subjects in each cohort mention a greater number of key-terms. This

observation is identical to the results in Stat2.1x. However, we can find that the

improvement is statistically significant in fewer cohorts (i.e., in the entire group of

subjects, subjects without prior exposure to MOOCs, and subjects without a bache-

lor’s degree). We might be observing fewer cohorts showing significant improvement

because of the advanced topics used in this user study. As discussed above, our

stratification of learners, which is inherited from the study of Stat2.1x, might not be

able to tell novices from advanced learners. Therefore learners in each cohort are too

diverse to perform consistently. This claim is supported by the much larger standard

deviations (i.e., longer error bars) observed in Fig. 3-17 than the ones in Fig. 3-16.

These results also strengthen our previous claim that, when linking is shown in the

interface, learners can access information more efficiently and retain more key-terms in

their summary of assigned topics. The improvement not only suggests another benefit

of linking in learning, but also implies the possibility of applying our framework in

various course subjects. However, these observations only support our hypothesis

that linking is helpful in learning, but cannot explain why. Without knowing the

reason, we cannot utilize this linking pedagogy in suitable conditions. Thus, in the

next section, we analyze the learners’ click log in order to provide an explanation.

3.5 Click log analysis

From the user study results discussed above, we can summarize that, by presenting the

linking among learning materials, learners can access course materials more efficiently

and perform better in learning tasks. However, we are also curious to discover how the

linking changes learners’ navigation behavior and why the change yields improvement

in accomplishing our learning tasks. Therefore, we examine the click log3 generated

3In our study of 6.00x, in addition to the submitted answers (i.e., the selected learning object or
the essay summarizing the assigned topic), we also record how learners interact with our interfaces.
Whenever a learner initiates an event to search a query or click on any learning object, the event
along with the triggered time is stored in our server.
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Table 3.8: In information search and concept retention scenario of the study of 6.00x,
the three metrics (number of search queries used to accomplish a task, number of
learning objects surveyed in each task, and the spent time in each learning object)
when various interfaces were deployed are computed. The averages (𝜇) and standard
deviations (𝜎) of the three metrics are listed here.

Information search Concept retention
null linking null linking

#Search queries (𝜇, 𝜎) (2.9, 2.9) (2.7, 2.8) (1.6, 1.2) (1.4, 0.9)
#Learning objects (𝜇, 𝜎) (10.9, 9.7) (7.7, 7.5) (11.8, 8.7) (7.8, 6.6)
Spent time per object (𝜇, 𝜎) (32.3, 73.4) (35.1, 64.9) (46.0, 88.4) (70.6, 115.8)

when learners attempted the tasks. We utilize the log to extract the following three

metrics:

∙ Number of search queries used in each learning task.

∙ Number of learning objects4 surveyed in each task.

∙ Time spent (measured in seconds) in each surveyed learning object.

In each learning scenario (i.e., search and retention), we compute the three metrics

averaging over the tasks using each of the two interfaces (i.e., 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔). The

results are summarized in Table 3.8.

Comparing first the numbers in the two scenarios, we observe that in the informa-

tion search scenario, learners tend to use more search queries, survey more learning

objects, and spend less time on each object. Considering the average time learners

have to spend in interacting with the interfaces in the two scenarios (6.6 minutes in

information search in average and 10 minutes in concept retention), the difference

in numbers of queries and learning objects between the two scenarios is even larger.

We surmise that the discrepancy results from the nature of the two scenarios. In

the search scenario, learners have to only identify the objects which contain informa-

tion for answering the assigned problems; however, they need to decide which search

queries to use. As for the retention scenario, learners have to digest and remember
4Note that because of the way we recorded the event, here the definition of a learning object is

slightly different from the rest of this thesis. A learning object in this section refers to a lecture
video, a page of lecture slides, a textbook section, or a discussion thread.
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information in the content, but it is obvious that they should use the assigned topics

or relevant terms as the queries. Thus, in the search scenario, learners are inclined to

survey more queries and learning objects, but spend less time on each of the queries

or objects.

Then we juxtapose the metrics of each interface within the two scenarios. We find

that, as compared to using the 𝑛𝑢𝑙𝑙 interface, when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 is deployed, experimental

subjects tend to use fewer search queries (information search: 2.7 𝑣𝑠. 2.9, concept

retention: 1.4 𝑣𝑠. 1.6), survey fewer objects (information search: 7.7 𝑣𝑠. 10.9, concept

retention: 7.8 𝑣𝑠. 11.8), but spend more time on each object (information search:

35.1 𝑣𝑠. 32.3, concept retention: 70.6 𝑣𝑠. 46.0). We believe this observation explains

our user study results. The observation suggests that, when linking is visualized,

learners are able to identify those learning contents which are more informative for

the assigned topics or problems; in contrast, when 𝑛𝑢𝑙𝑙 is deployed, learners have to

try more queries and learning objects. Thus, with our 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface, learners can

spend more time in understanding relevant information for the search or retention

tasks, and achieve better performance. The observation here and the user study

results can also be related by reduced cognitive load, which has a positive effect on

learning [70]. When linking is presented, it is easier for learners to filter out less

useful learning objects, which alleviates learners’ cognitive load in understanding the

materials.

To support our conjecture, we further investigate how relevant the learning objects

learners surveyed are to their assigned tasks. In order to measure the relevance, we

utilize the labeled valid learning pieces which were used in evaluating whether the

selected learning content is correct in the information search scenario. With the click

log recorded in this search scenario, we measure the percentage of surveyed learning

objects which contain at least one valid learning piece for the assigned problem.

The mean and standard deviation of percentage is 0.33 and 0.26 for tasks using

the 𝑛𝑢𝑙𝑙 interface, and 0.50 and 0.33 for tasks using the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 one. We can observe

that when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 is deployed, learners tend to survey more objects containing valid

learning pieces. This fact supports our previous claim that with the relation among
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learning materials presented, learners are able to filter out learning objects which are

less likely to contain useful content, and focus on informative objects. Thus, better

learning outcomes are achieved.

To further illustrate how linking can help learners identify useful information,

we visualize two sampled search paths recorded from two subjects when they were

completing assigned tasks using different interfaces. We sampled the two paths based

on the following criteria. First, in the paths, subjects surveyed the same number of

learning objects as the interface average (i.e., 10 objects for the path recorded in the

task using the 𝑛𝑢𝑙𝑙 interface and 7 objects for the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 one). Second, learners

surveyed the same number of objects that contain at least one valid learning piece as

the interface average (i.e., 3 informative objects for both interfaces). Third, the two

paths were recorded from tasks assigned with the same question.

In Fig. 3-18, we show the question the two sampled search paths corresponded to.

This question is about the normal distribution. In Fig. 3-19 and 3-20, two search paths

observed in tasks using the 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface respectively are presented. In

these paths, screenshots and titles of surveyed learning objects are listed according

to the visited order; the material type of each object is also indicated. Furthermore,

the titles of objects containing valid learning pieces are put in red; the titles of other

objects are in cyan.

From these two paths, we first notice that the learner who was assigned with the

𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface has significantly better survey quality. Most objects this learner

selected are relevant to the topic of the normal distribution. In contrast, the search

path of the learner using the 𝑛𝑢𝑙𝑙 interface seems unplanned. This observation agrees

with our previous claim that learners can benefit from linking since they are able to

more easily filter out less informative materials and focus on the useful ones. Further-

more, we note that the learner using the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface switched between different

types of materials more frequently. This fact also strengthens our assertion that when

linking is presented, learners are capable of utilizing complementary information from

various types of materials to reinforce their learning.

In this section, we analyzed the click log recorded in the user study of 6.00x, in
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Figure 3-18: The question asked in the tasks where we recorded the two sampled
search paths.

order to explain why linking yields better learning performance in our experiment.

We found that, when the linking among materials is presented to learners, they survey

fewer queries and objects as well as spending more time in each object. Moreover,

the surveyed object is more informative and therefore learners can perform better in

tasks. However, we should note that the differences in metrics computed here are not

statistically significant. Hence, further stratification of samples is required to obtain

stronger evidence.

3.6 Conclusions

This chapter explores our first research question: can manually generated linking help

learning? We start by defining two types of linking: homologous and heterologous
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1.	Using	Inheritance:	Designing	a	Class	Hierarchy	
(Video)	

2.	Standard	devia>on	and	histogram	
(Video)	 3.	Measuring	complexity	(Video)	

4.	Hashing	(Video)	 5.	Rolling	a	die	(Video)	 6.	Think	about	computa>onal	complexity	
(Textbook)	

7.	Distribu>ons	(Textbook)	 8.	Exponen>al	and	Geometric	
Distribu>ons	(Textbook)	 9.	Uniform	Distribu>ons	(Textbook)	

10.	Normal	Distribu>ons	and	
Confidence	Levels	(Textbook)	

Figure 3-19: The sampled search path recorded when a subject used the 𝑛𝑢𝑙𝑙 interface
to complete the assigned task. In this path this subject surveyed 10 objects and 3
of them contain valid learning pieces. The 3 objects are indicated with their titles in
red; the titles of the rest objects are put in cyan. These numbers equal the average
of the 𝑛𝑢𝑙𝑙 interface.

linking. We formulate the annotation of these two linking types as alignment and

binary classification problems respectively, and demonstrate how the annotation can

be done by researchers, online workers, and course staff. Then, we implement a

𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface that can present learning materials and the annotated linking among

them simultaneously. After that, we conduct a large-scale user research study with

the two selected STEM courses, statistics and programming language, to investigate

the question.

Our user research shows that, this 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface enables learners to search for
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1.	Standard	devia-on	and	histogram	
(Video)	

3.	Benford’s	Distribu-on	(Textbook)	

4.	Crea-ng	func-ons	(Video)	 5.	Normal	distribu-on	(Video)	 6.	Normal	distribu-on	(Slides)	

7.	Normal	Distribu-ons	and	Confidence	
Levels	(Textbook)	

2.	Standard	devia-on	and	histogram	
(Slides)	

Figure 3-20: The sampled search path recorded when a subject used the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interface to complete the same task as in Fig. 3-19. In this path this learner surveyed
7 objects and 3 of them contain valid learning pieces. These numbers equal the
average of the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface.

desired learning content more efficiently and retain more concepts more readily. By

analyzing the click log recorded when learners using various interfaces in the user

research, we observe that, presenting both content and linking at the same time

helps learners focus on informative learning materials, and thus potentially reduces

learners’ cognitive load. These results support the notion that manual linking can

indeed improve learning outcomes.
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Chapter 4

Can we link automatically?

In this chapter, we investigate methods to link courseware automatically. We showed

in the previous chapter that linking can assist learners navigating through course

materials, and help learners find supportive learning content when they are in need,

e.g., confused. The visualization of relation among content also provides guidance

to mitigate learners’ cognitive load. Hence, learning experience and outcome can be

enhanced.

However, from our experience in developing a linking system, annotating relation

information requires deep and comprehensive understanding of the course subject, and

the labeling itself is time-consuming. Moreover, even though the linking is generated

for the current class, obtaining the relation annotation for future offerings requires a

lot of redundant work - since in a new class offering, more forum posts come in (but

many of them are duplicated), and several lectures may be re-organized, we have

to maintain and repeat labeling on the updated materials. Thus, implementing the

educational content linking framework manually is cost-prohibitive, not efficient, and

not scalable. In order to allow the proposed framework to be more easily deployed

and in a more general condition, especially when the size of learning materials is

enormous, we investigate whether linking of learning content can be generated by

machines.

In the following investigation of automated linking methods, we focus on three

issues:
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∙ How to design an automated linking method?

∙ How closely can the automatically generated linking approach to human anno-

tation?

∙ Can automated linking still benefit learners?

For the first issue, we will discuss how to formulate linking generation as a predic-

tion/classification problem, as well as how to solve the problem with machine learning

and human language technologies. For the second issue, we will compare machine gen-

erated linking with ground truth established in advance by a human (i.e., the linking

we collected in the previous chapter). The comparison can be made easily and shed

light on the capability of implemented automated methods. However, such evalua-

tion is not perfectly precise, since it measures the similarity between two generated

linkings, instead of our ultimate goal: learning outcome improvement. Furthermore,

typically there are many configurations of linking which might benefit learners. Com-

puting the similarity to a gold standard is a biased metric which ignores all the other

beneficial possibilities. Therefore, we also explore the third issue by conducting a user

study on the automated linking, with a pipeline similar to that designed in the pre-

vious chapter. Although conducting a user study is more costly and time consuming,

it evaluates directly the benefits of machine generated linking on learners.

We explore the three issues on the same two MOOCs: Stat2.1x and 6.00x. In our

experiment, we find that, although there are some differences between the machine

and human generated linking, they only result in slight negative effects on learning.

Moreover, the interface driven by automatic linking (denoted as the auto linking

interface in the following) still allows learners to achieve better performance in their

tasks. Furthermore, we analyze the difference pattern, and conclude that anecdotally

most disagreements between human annotators and our contributed linking algorithm

do not make much difference to learners. In the rest of this chapter, we describe our

exploration in detail.

The study discussed above was conducted by comparing an interface presenting

linking information to a baseline that implements the conventional strategy for deliv-
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ering learning materials online (i.e., the null interface). Since MOOC is an emerging

research field in education, researchers and educators have constantly been integrat-

ing innovative pedagogies into the design of MOOC. We are curious how effective

our proposed linking framework is as compared to these state-of-the-art techniques.

Therefore, in this chapter we conduct another user study to compare our linking/auto

linking interface to the interface currently deployed on edX (denoted as the edx inter-

face). Our results show that learners still achieve better performance in the explored

learning tasks with our manually and automatically generated linking.

4.1 Problem formulation

To design our automated algorithm, we choose to focus on the natural language con-

tent in course materials and formulate the linking generation task as a sequential

tagging problem. Natural language is an integral part of education for knowledge

transferal; thus we believe an algorithm based on the understanding of natural lan-

guage in learning content can be more generalizable to different courses. The se-

quential tagging formulation is as follows: for nodes on the trunk of a linking tree,

we view them as a sequence of documents, and represent them as a sequence of in-

put feature vectors x = (x1,x2, ...,xT). Determining which supplementary objects

should be linked to these nodes can be interpreted as predicting a sequence of labels

y = (𝑌1, 𝑌2, ..., 𝑌T) given x. Here 𝑌𝑖 represents the linking configuration of trunk node

𝑖, e.g., the index of an aligned slide or whether a given discussion thread is linked to

node 𝑖 or not.

We adopt the sequential tagging formulation, because the ordering and context

is informative when modeling learning materials. Many theories in cognitive science

of learning suggest that, to achieve meaningful learning1, humans have to match the

information they learn to how their minds are structured, and integrate the new

information with their prior knowledge and existing cognitive system [51, 6]. Guided

1The state where the newly acquired knowledge is fully understood and ready for future used in
different circumstances.
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by these theories, learning content is typically structured in a sequentially dependent

manner to help students acquire knowledge. Thus, we surmise that the contextual

dependency can be helpful in linking prediction, e.g., it could be more probable that

neighboring video segments are linked to similar or identical sets of supplementary

learning objects.

There are many other applications of this sequential tagging formulation in the

natural language understanding domain, including part-of-speech (POS) tagging [112],

semantic tagging [75], and machine translation [9]. These applications work on the

granularity of words (i.e., each token is a word) and attempt to interpret the meaning

of each token. Since natural language is usually interpreted in sequence by a human,

modeling the context is also beneficial in understanding the syntax and semantics. In

our formulation, a learning object, which can be a video segment, a slide, a textbook

section, or a post thread, is adopted as a token, and we model the contextual and

lexical dependency upon this larger unit with similar formulation.

Due to the abundance of applications, many machine learning models were pro-

posed to solve the problems, including linear-chain CRF, Hidden Markov Models

(HMM), general graphical models, and long short-term memory (LSTM) recurrent

neural networks [56]. In this thesis, we also adopt linear-chain CRF for our linking

problem; HMM can be interpreted as a linear-chain CRF with generative model-

ing2; as compared to linear-chain CRF or HMM. A general graphical model removes

the limitation of the Markov property and thus has higher complexity3; LSTM is a

model with even higher complexity and non-linearity, and it is widely used to express

complicated data dependencies.

We choose linear-chain CRF for several reasons. First, the size of our corpus

is relatively small as compared to many other natural language applications. This

is due to the difficulty of data annotation: labeling the relations among learning

objects requires deeper understanding of the content as compared to annotating the

POS tags or semantics of each word. Our corpus size cannot afford the training of

2Linear-chain CRF is a discriminative model.
3Higher complexity means that the underlying model has more free variables and more ability to

represent dependency in data.
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complicated models such as LSTM or general graphical models because of the hazard

of overfitting. Second, as compared to non-linear models such as LSTM, a linear

model makes it easier to understand the results. For instance, each weight in the

model can be directly interpreted as the importance of a corresponding feature. The

interpretation can facilitate subsequent system development. Third, a discriminative

model is preferred in our tasks, since it allows us to incorporate new features into the

model without making unnecessary assumptions about the underlying probabilistic

distribution4. This property allows the automated algorithm to be extended easily

to various features, which is favorable because there are usually many information

modalities in course materials. In the following, we will discuss how to predict linking

with CRF under this formulation.

4.2 Sequential tagging with CRF

As we discussed in Section 3.1, we categorize the relations among learning materials

into homologous and heterologous linking, and adopt different annotation method-

ologies (i.e., the alignment and classification). We follow the same categorization and

design our automated linking algorithm for the two types of relation respectively.

In the homologous case, we apply the linear-chain CRF model to solve the align-

ment problem. First, we have two types of materials to be linked: one is the trunk

and the other is a set of candidates of leaves. In this thesis, we designate the trunk as

the lecture videos in the course; thus the candidates in this homologous case are the

lecture slides corresponding to each video. For each lecture 𝑖, the video transcription

sentences form the sequence of input feature vectors x(𝑖) = (x(𝑖)
𝑡 )T𝑡=1 in the CRF (i.e.,

4A generative model such as HMM is based on a full probabilistic model. It has to model the
probabilistic distribution of all variables, including the observed (i.e., the features or observations)
and unobserved (i.e., the labels) ones. The distribution can be learned from a corpus from scratch
but the learning usually requires too many data samples. We can also make assumptions to initialize
or limit the distributions to a specific form for the learning to be feasible (especially when we do
not have enough data). However, making assumptions is error-prone. In contrast, a discriminative
model only models the dependency between observations and the unobserved variables that should
be inferred. In such a model we do not have to learn the entire distribution or make unnecessary
assumptions. Therefore, it is much easier to augment a discriminative model with new features (i.e.,
introducing new variables and dependencies into the model).
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x(𝑖)
𝑡 ) is the 𝑡th transcription sentence). Then we apply CRF to predict a sequence of

labels y(𝑖) = (𝑌
(𝑖)
𝑡 )T𝑡=1 given x(𝑖). Here the value of unobserved variable 𝑌

(𝑖)
𝑡 is the

index of slide aligned to x(𝑖)
𝑡 ; that is, 𝑌 (𝑖)

𝑡 ∈ {1, 2, ..., 𝑆(𝑖)} and 𝑆(𝑖) is the number of

slides used in lecture 𝑖. In this way, we transform the alignment task into a problem

of inferring the value (i.e., the label or the index of the aligned slide) of 𝑌𝑡 from

observation x, and solve this inference problem with CRF.

With the linear chain structure of CRF, the model not only learns the dependence

between observation x (i.e., the content in each learning object) and alignment y,

but also the contextual dependence (i.e., dependence between 𝑌𝑡−1 and 𝑌𝑡) over the

sequence of objects. Hence, the pattern of order-preserved mapping can be learnt

during the model training. The learnt patterns function as probabilistic rules affecting

the prediction of alignment (e.g., if sentence 𝑡−1 is aligned to slide 𝑠, it is more likely

that sentence 𝑡 is aligned to slide 𝑠 or 𝑠 + 1, but it is impossible for that sentence

to be aligned to slide 𝑠′ ∈ {1, 2, ..., 𝑠 − 1}). These rules model the order-preserving

characteristic of homologous linking.

For heterologous linking, we also apply linear-chain CRF to the binary classifica-

tion problem. Similar to the homologous case, we also have a sequence of learning

objects from the trunk (i.e., the lecture videos in this thesis), and another learning

object sequence as the candidates of leaves (i.e., textbook sections or forum posts in

the following implementation). The video transcription is still the input. However,

in contrast to using a sentence as a token, here we adopt a video vignette (i.e., a

sequence of sentences aligned to the same page of slides in the previous alignment

task) as an item5. Besides, instead of modeling a sequence of candidate objects at

a time, every object is considered separately, and the CRF is employed to predict

binary labels - whether the considered object is linked or not. That is, in this task

the input of CRF is x(𝑖𝑗) = (x(𝑖𝑗)
𝑡 )T𝑡=1 for lecture 𝑖 and supplementary object (e.g.,

textbook section or post) 𝑗; x(𝑖𝑗)
𝑡 is the collection of transcription sentences of lecture

5As explained above, we use larger units here to reduce the number of tokens, since each supple-
mentary object is considered separately in this problem, which greatly increases the computation
time of the model in training and inference. Furthermore, a video vignette is a more comparable
unit to supplementary objects used here, which are either textbook sections or forum posts.
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𝑖 which are aligned to slide 𝑡 in that lecture. The CRF predicts a label sequence

y(𝑖𝑗) = (𝑌
(𝑖𝑗)
𝑡 )T𝑡=1, where 𝑌

(𝑖𝑗)
𝑡 ∈ {0, 1} represent whether video vignette 𝑡 is linked to

supplementary object 𝑗 or not.

With the linear chain architecture, in this binary classification task we still model

the dependency of linking configurations among neighboring learning objects on the

trunk, but with a loosened constraint. Our model here can still learn the linking

pattern from a sequence of video vignettes. For instance, for neighboring vignettes,

they are more likely to share the same relationship (i.e., linked or not linked) to a

supplementary object. However, since each supplementary object is considered inde-

pendently, no dependence across supplementary objects will be learnt. This modeling

of data dependency agrees with our understanding of heterologous linking. As dis-

cussed above, heterologous linking is not order-preserved. Thus, certain learning

objects arranged closely in one material may imply little about the arrangement of

their linked objects in another material. For example, whether learning object A𝑖 is

linked to object B𝑗 might have little to do with the event that A𝑖−1 is linked to B𝑗−1

due to the variation of object arrangement across materials6. Since such dependency

is of little information in predicting linking, modeling the dependency across sup-

plementary and trunk objects simultaneously simply increases the risk of overfitting

(due to the increased model complexity) and introduces noise.

In contrast, the linking configuration of a sequence of trunk learning objects to

a supplementary one does correlate. This is because topic continuity in educational

material is crucial for learners to better digest the content. It is unlikely that the

lecturer switches topics abruptly or frequently. Thus, for instance, whether learning

object A𝑖 is linked to object B𝑗 is dependent on the event that A𝑖−1 is linked to B𝑗.

As compared to our model for homologous tasks, this model design is more reasonable

for heterologous linking.

6Here A and B represent two types of learning materials; 𝑖 and 𝑗 are the indices of learning
objects in the two materials respectively.
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4.3 Feature extraction

Information in MOOC materials is multimodal. Text, vision, audio content, or even

the click-log can be useful for linking. To represent the diverse data in a uniform way

that can be learned by the CRF model, we have to design the feature function set

in equation 2.4. These features should be informative and can help the inference of

labels. In the following, we discuss the design of features for our linking task.

Lexical similarity features. Since natural language is the integral part of

education and knowledge transferal, we design our first feature set, lexical similarity

features, based on the text content of course materials. These features are designed

based on the assumption that the similarity between two learning objects is correlated

with whether the two objects are linked. In the alignment task, lexical features can

be written as:

𝑓𝑦𝑘(𝑌𝑡, 𝑌𝑡−1,x) = cos_sim(Φ(x𝑡+𝑘),Φ(𝑦))1{𝑌𝑡=𝑦}, 𝑘 ∈ {−𝐾,−𝐾+1, ..., 𝐾} 𝑎𝑛𝑑 𝑦 ∈ {1, 2, ..., 𝑆}

(4.1)

Here 1 is an indicator function and K is a hyper-parameter deciding the length of

context considered in the model. Cos_sim(x𝑡+𝑘, 𝑦) is the cosine similarity between

the vector representation (defined by Φ) of video transcription sentence 𝑡+ 𝑘 and the

supplementary learning object 𝑦. In the alignment task, 𝑦 is the page index of lecture

slides. Thus learning object 𝑦 is the 𝑦th page in the slides.

As for the binary classification task, the lexical features we extracted are

𝑓𝑘(𝑌𝑡, 𝑌𝑡−1,x) = cos_sim(Φ(x𝑡+𝑘),Φ(𝑙𝑜)), 𝑘 ∈ {−𝐾,−𝐾 + 1, ..., 𝐾} (4.2)

Since in this task each supplementary learning object is considered separately, the

lexical features compute the cosine similarity between the vector representation of

this supplementary object 𝑙𝑜 and video vignette 𝑡 + 𝑘 (i.e., sentences aligned to slide

𝑡 + 𝑘 in the previous task).

To compute the cosine similarity, we have to define the vector representation, Φ,

of a document (i.e., a video sentence, a video vignette, or a supplementary learning
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object). The first adopted is a bag of words (BoW) representation. In this represen-

tation, we compute the TF-IDF score of each word in the document, and transform

the document to a vector where each dimension corresponds to the score of a unique

word. Second, we adopt the word2vec representation, which is introduced in detail

in Section 2.3.3. Word2vec is a continuous language model trained with a neural

network to compute the word probability based on the word’s context in the corpus.

After the model is trained, each word is represented as a vector in a continuous space

by collecting the neural network weights corresponding to that word. With the word

level embedding, each word in a document is transformed first to its word2vec rep-

resentation, and the document vector is computed by averaging these word vectors.

As opposed to the BoW model, the long-term semantic and syntactic regularities in

language can be learned in the word2vec embedding. Thus we believe our linking

algorithm can understand learning objects from different aspects with the two vector

representations.

Transition features. As discussed above, we intend to learn the contextual

dependence of linking configuration with CRF. Thus, we design the second feature

set - transition features:

𝑓𝑦𝑦′(𝑌𝑡, 𝑌𝑡−1,x) = 1{𝑌𝑡=𝑦}1{𝑌𝑡−1=𝑦′}, 𝑦, 𝑦′ ∈ 𝑌 (4.3)

where 𝑌 is the set of labels. The assumption behind these features is that the inference

of a linked object for two consecutive video segments (i.e., sentences or vignettes)

is dependent. These features are typically used in applications of CRF to encode

temporal dependencies, and here they allow our CRF model to learn the temporal

patterns of linking configuration.

Visual features. Lecture videos are usually the center of MOOCs. In addi-

tion to the human language content such as video transcription, the visual channel

can also provide rich information to understand the materials and infer the linking.

For example, studies show that scene changes in educational videos affect learners’

watching behavior and usually coincide with structural breaks of videos [69, 68, 146].
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Hence, we design a set of visual features to extract this useful information:

𝑓𝑦(𝑌𝑡, 𝑌𝑡−1,x) = frame_distance(𝑡)1{𝑌𝑡=𝑦}, 𝑦 ∈ 𝑌 (4.4)

Here we define frame_distance(𝑡) as the Euclidean distance between video frames

corresponding to the beginning and end of video segment 𝑡. The time code information

of sentences is encoded in video subtitles, which are typically provided in MOOCs to

enhance material accessibility. If there are no subtitles, we can still obtain the time

code by aligning the audio signal with lecture transcription or perform automatic

speech recognition.

Since video frames are represented by the color of each pixel, we also have to

transform this information to vectors for computing the distance. We investigate two

vector representations: HSV (hue, saturation, and value) histogram and horizontal

projection. HSV histogram is widely used in tasks such as scene detection and rep-

resents a frame by its color distribution [124]. HSV histogram of a video frame is

obtained by first transforming the RGB color value of each pixel in the frame to the

HSV space. Then the three coordinates (i.e., H, S, and V) of the HSV space are

discretized into a number of bins. The number of pixels in each bin is counted to

compute a three-dimensional histogram, and the histogram is flattened to a vector

as the HSV representation of the frame. HSV histogram is popular since it models

the mechanism of human color perception. Furthermore, as opposed to simply repre-

senting frames as vectors of color of each pixel, the histogram method is much more

robust to noise.

However, the HSV representation fails to capture some distinct characteristics of

educational videos. For instance, in MOOCs, it is usually the case that the entire

video consists of shots of slides or scenes with very similar colors. The HSV descriptor

cannot effectively distinguish among these slides or scenes. Thus, we implement the

second descriptor, horizontal projection. To extract this descriptor, for a frame with

𝑚 by 𝑛 pixels in the HSV space, we first represent the frame with three 𝑚 by 𝑛

matrices corresponding to the three coordinates (i.e., H, S, and V). For each matrix
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we add up the intensity of each row to project the visual content along the horizontal

direction and obtain an 𝑚 by 1 vector. The horizontal projection of a frame is the

concatenation of vectors from the three matrices. Since many informative contents

in educational videos are presented horizontally (e.g., bullets in slides), this tailored

descriptor can describe video frames in a more pedagogically meaningful way.

One thing that should be noted is that in Equation 4.4, these features only depend

on the frame distance and label of segment 𝑡. This is problematic since the frame

distance between the beginning and end of sentence 𝑡 has little to do with the label

of the sentence, but is highly dependent on whether labels of sentence 𝑡 and 𝑡− 1 are

different. With the current label set, the dependence between label transition and

frame distance cannot be represented by the features.

Thus, we add another label, boundary, to the original label set. In Fig. 4-1, we

illustrate how this additional label works by comparing the same linking configuration

represented with two label sets. The upper panel of Fig. 4-1 corresponds to the

original label set described above, where the value of the label is the page index of

the linked slide (alignment task) or whether the considered supplementary object is

linked (binary classification task). In the lower panel, an additional boundary label

(represented as ’bnd’ in the figure) is also employed to denote the condition where

the two consecutive segments are linked to various slides or have different relations to

the considered object. With the additional boundary label, the dependence between

label transition and frame distance can be encoded in the visual feature functions,

and the extended label set has the same ability to express linking configuration as the

original set. Thus, we adopt the extended label set for incorporating visual channel

information to our automated linking algorithm.

Another possible solution to encode the dependence between label transition and

frame distance is using feature functions depending on both 𝑌𝑡 and 𝑌𝑡−1. However,

this solution increases the number of features and makes the model more likely to

overfit when a small training corpus is used. Thus we choose the extended label set

as the solution.

In this thesis, we only use the frame distance features to encode visual information
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Segments		 2 3	 5	 7	6	4	1

Labels	(alignment)	 A	 A	 B	 C	B	B	A	

Labels	(binary	
classifica>on)	

a	
b	

Y	 Y	 N	 N	N	N	Y	
N	 N	 Y	 N	Y	Y	N	

Segments		 2 3	 5	 7	6	4	1

Labels	(alignment)	 A	 Bnd	 B	 C	Bnd	B	A	

Labels	(binary	
classifica>on)	

a	
b	

Y	 Bnd	 N	 N	N	N	Y	
N	 Bnd	 Y	 N	Bnd	Y	N	

Figure 4-1: Examples of representing the same linking configuration with two different
label sets. In the upper panel, the original label set described in Section 4.2 is used.
A, B, and C denote the aligned slide index; Y and N denote whether the considered
object is linked. In the lower panel, the original label set along with a boundary label
(denoted as ’bnd’ ) is used.

in course materials. There are other methods to understand the visual channel,

e.g., optical character recognition (OCR), and semantic understanding of images [50].

However, OCR cannot provide much additional information on top of other resources

such as slides or video transcription. Current image semantic understanding can only

extract shallow information such as there is a man writing on the black board or

the woman is talking. Thus, although these methods are getting popular recently,

we believe they are not suitable or mature enough for our tasks, and choose not to

investigate them here.

Meta-data features. Some description of learning content is also informative in

inferring linking. Thus we extract meta-data features to encode such information. In

this thesis, two types of meta-data features are used: position and learner tagging.

In the following we describe the two features respectively.

The following is the equation of position features in the alignment task:

𝑓𝑦(𝑌𝑡, 𝑌𝑡−1,x) = exp(| 𝑡
T

− 𝑦

𝑆
|), 𝑦 ∈ {1, 2, ..., 𝑆} (4.5)
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In this feature set, the difference between the relative position of a video transcription

sentence and a slide in their original sequence is encoded. The relative position is

computed by dividing the index of the sentence or slide by the number of sentences

or slides in the lecture. The motivation of this feature set is self-evident: if a sentence

is mentioned at the beginning of the lecture, this sentence is more likely to be aligned

to the first couple of slides.

We also extract similar features for the binary classification task:

𝑓(𝑌𝑡, 𝑌𝑡−1,x) = exp(| 𝑡
T

− 𝑖𝑛𝑑𝑒𝑥(𝑙𝑜)

N
|) (4.6)

In this case 𝑡 is the index of video vignettes in the entire sequence of lecture videos,

and T is the number of video vignettes in the entire course. index(lo) is the index of

the considered supplementary learning object, and N is the number of supplementary

objects in the course (e.g., number of textbook sections or discussion threads). The

textbook and forum is sorted and indexed based on the section number and thread

creation time respectively.

Learner tagging is another set of meta-data features we utilized. In the MOOC

platform where we collected learning content for experiments in this thesis, learners

are allowed to post discussions under each lecture video [36]. We record this tagging

information and create a function 𝑙𝑜(𝑡). This function maps the 𝑡th video vignette to

a set of discussion threads which were posted under the video this vignette belongs

to. With this function, we extract our learner tagging features as follows:

𝑓(𝑌𝑡, 𝑌𝑡−1,x) = 1{𝑙𝑜∈𝑙𝑜(𝑡)} (4.7)

where 𝑙𝑜 represents the discussion thread we considered each time. Although learners

sometimes post irrelevant discussions under the video, such as chatting with each

other, we believe this feature set is helpful for our automated linking system by

narrowing down the possibly linked vignettes to each thread. Note that the tagging

information is only available in discussions with the current MOOC platform; thus the

learner tagging features are only deployed in the task of linking videos and discussions.
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As described above, we can observe that features we utilized here are diverse in

their forms and value ranges. For all these feature functions, we only assume the

existence of dependence between certain observations and labels; no assumption of

distributions for these dependencies is required. Thus, with our CRF models it is

easier to add new features and extend the automatic linking algorithm as compared

to using a generative method such as HMM.

4.4 Evaluation: similarity to human labeling

We then evaluate our linking algorithm with materials in the two MOOCs introduced

in Section 2.4: Stat2.1x and 6.00x. In these two MOOCs, we have lecture videos,

slides, and textbook in Stat2.1x; as for 6.00x, the previous three types of materials

along with forum posts are used. Thus, we investigate automated homologous linking

between lecture videos and slides in the two MOOCs. For heterologous case, we

study video-to-textbook-section linking in Stat2.1x, and video-to-textbook-section

along with video-to-discussion-thread linking in 6.00x. Since in the heterologous case

the video vignette is used as the linking unit, in the experiment we take a two-pass

procedure: we first train a CRF to align video sentences to slides. Then we utilize the

best alignment result in the development set to obtain the video vignette (i.e., assign

the sentences aligned to each slide as one video vignette). With the video vignettes

we then train CRFs to predict linking between vignettes and textbook sections/forum

discussions.

As discussed at the beginning of this chapter, two issues are explored in the eval-

uation: 1) how closely can the automatically generated linking approach to human

annotation? 2) Can automated linking benefit learners? In this section, the first

issue is investigated. Here we compare automated linking results to humans’ label-

ing collected and discussed in Section 3.1.4, and compute F1 scores to measure the

similarity. As for the second issue, we will explore it in the next section.

In the evaluation, instead of simply splitting the corpus into training and test-

ing set, we adopt a 5-fold cross validation technique. Specifically, we partition our
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Table 4.1: The F1 scores (%) of automated linking systems in Stat2.1x using various
models (logistic regression and CRF) as well as lexical (BoW stands for bag of words
and word2vec for the neural network word embedding) and visual (HSV stands for
HSV histogram and HP for horizontal projection) features. Performance of both
homologous (i.e., linking between video sentences and slides) and heterologous (i.e.,
linking between video vignettes and textbook sections) tasks is listed. In the table,
the parentheses after word2vec denote that the HP visual features are only deployed
in the homologous task.

Linking systems (model, feature) Homologous Heterologous
Logistic regression BoW 74.9 29.6

CRF
BoW 81.3 45.2
BoW + HSV 84.9 44.6
BoW + HP 85.8 44.8

CRF word2vec (+ HP) 86.2 45.1
BoW + word2Vec (+ HP) 86.7 47.2

materials into five equal sized batches. Every time, we choose one batch for testing.

The remaining four batches are used for training and hyper-parameter selection. We

iterate the training-testing procedure five times with different batches as test sets,

and average the test set F1 scores to evaluate the model performance. We adopt a

cross validation technique here, because we want to present the entire course with

machine predicted linking. If we split the corpus into training and testing, the ma-

chines can only predict linking in a portion (i.e., the test set) of the courseware - it

is meaningless to predict linking in the training set since the information of human

annotation is already used for training the model.

We first investigate the performance of machine generated linking in Stat2.1x. In

Table 4.1 we summarize the F1 scores of automated linking systems using various

models and features in the homologous (i.e., linking between video sentences and

slides) and heterologous (i.e., linking between video vignettes and textbook sections)

tasks. To obtain comparable evaluation metrics, in both tasks F1 scores are computed

at the sentence level. Therefore in the heterologous case we first map the vignette-

level linking results to the sentence level before computing the F1 scores.

In this table we study how visual and lexical features affect linking performance by

using various vectorization techniques to encode learning objects for computing video
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frame distances and lexical similarities. Here, HSV histogram (denoted as HSV) and

horizontal projection (denoted as HP) descriptors are investigated for frame represen-

tation; bag of words (denoted as BoW) and neural network embedding (denoted as

word2vec) are studied for representing text content. Since text content is an integral

part in education for knowledge transferring, and BoW is the most widely used text

vectorization in natural language processing, in our study we start with linking sys-

tems using BoW for lexical features. The word2vec and visual features are gradually

introduced to the systems for investigating their potential benefit.

In addition to visual and lexical features, we also investigate the benefit of using

transition features (i.e., modeling the contextual dependency) in predicting linking.

The effect of transition features is studied by comparing the CRF algorithm with a

baseline model, logistic regression. In logistic regression, the alignment and linking of

each video segment is predicted separately and no contextual dependency is modeled.

Thus by comparing logistic regression and CRF systems using identical visual and

lexical feature sets, the potential benefit of transition features in linking performance

can be studied.

As for the meta-data features, we utilize them as default features in every linking

system we report, since these features have been shown to be beneficial in general

in a variety of applications [54, 122]. In the experiment here with Stat2.1x, position

features are the meta-data features we deploy in the linking system.

In this table first we can see that the logistic regression model (row 1) performs

significantly worse than other systems. When an identical feature set (except tran-

sition features) is used, CRF outperforms logistic regression by 6.4% in homologous

linking and 15.6% in the heterologous task (c.f., row 1 and 2). This observation

shows the benefit of formulating linking as a sequential tagging problem: by treating

the video segments as a data sequence and introducing transition features into the

system, we can model the temporal patterns of linking configuration. As compared

to simply modeling the content similarity in materials such as in logistic regression,

the contextual information allows the model to better understand how the topics in

courseware are organized and dependent on one another. Therefore, the transition
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features yield better linking performance in both tasks.

Then on top of lexical features computed from BoW embedding, we investigate

how the additional visual features affect the performance of CRF linking systems (c.f.,

row 2 to 4). In homologous linking, both HP and HSV features yield improvement.

In order to explain why visual features are helpful in this task, we analyze our course

materials. We find that lecture videos are usually dominated by colloquial speech, and

about only 23% of sentences in the video transcription contain key terms (the terms

in the textbook glossary) which are useful for identifying underlying concepts. This

number shows that the lexical information is sparse. Besides, the lexical similarity

features are sometimes noisy at the transition of two slides or topics. For instance, the

lecturer might conclude the previous topic or connect two topics with a story. Thus,

information from verbal content is often insufficient for inferring linking. In contrast,

the forte of our visual features is encoding information pertinent to scene changes,

which can provide complementary clues to the lexical features for aligning slides

and videos. Thus, combining both features yields better performance. Furthermore,

comparing row 3 and 4 we find that HP outperforms HSV in the linking performance.

We believe that HP is more suitable for our tasks since it is tailored to educational

videos where many contents are presented horizontally.

As for the heterologous task, we find both visual features yield no improvement.

This is presumably because information encoded in these visual features is mostly

about when the scenes are changed, and has little to do with inferring the linking

between textbook sections and video transcription. Even if there is any useful in-

formation, it is very likely that the information has already been encoded in the

alignment we used for obtaining video vignettes. Thus, providing visual features in

this task may simply introduce irrelevant or redundant information to the model, and

thus no improvement is observed.

We then study the benefit of word2vec embedding on top of our best systems up to

now (i.e., row 4 in the homologous linking and row 2 in the heterologous task). In row

5 we replace the lexical similarity features computed from BoW document embedding

with features from word2vec embedding. In the table, the parentheses after word2vec
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denote that the HP visual features are only deployed in the homologous task. As

compared to the original best systems, a similar linking performance is achieved (c.f.,

85.8% to 86.2% in the homologous linking and 45.2% to 45.1% in the heterologous

task). In row 6, we integrate the lexical features computed from both BoW and

word2vec embeddings, and further performance improvement is observed (c.f., 86.2%

to 86.7% in homologous linking and 45.1% to 47.2% in heterologous task).

To explain the improvement, we analyze the two lexical feature sets. We found

that values of similarity features computed from BoW embedding are sparse, i.e.,

most values are zero. This is presumably because each word in BoW representation

is treated as an atomic unit; each word’s corresponding element in the vector works

independently from others. Thus, if two documents have no overlapping words, the

cosine similarity between them is zero. Similarity features computed from this em-

bedding encode information about how many overlapping words two learning objects

have, which is highly correlated with whether the two objects are linked. However,

sometimes different terms are chosen for expressing the same meaning in various ob-

jects or materials. The BoW embedding fails in dealing with such conditions and

tends to give false negative, i.e., two objects are relevant but their similarity is zero

or under-estimated.

On the other hand, we found that similarity values computed from word2vec em-

bedding are much smoother. In the word2vec representation, words and documents

are represented as vectors in a continuous space, where dimensions work jointly to en-

code different semantic or syntactic regularities. Semantically or syntactically related

words could be distributed closely in the continuous space, and it is possible that

the meaning of unseen words is reconstructed by their relevant terms. The breaches

caused by mismatched wordings in two documents are alleviated. However, more false

positives could be found, i.e., two objects are irrelevant but their similarity is high.

Based on these findings, we believe BoW and word2vec embeddings provide com-

plementary encodings of text content, and therefore integrating similarity features

computed from the two yields better performance.

We then apply our method to generate linking in 6.00x. In Table 4.2 the perfor-
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Table 4.2: The F1 scores (%) of automated linking systems in 6.00x using various
models (logistic regression and CRF) as well as lexical (BoW and word2vec) and
visual (HP) features. Performance of both homologous (i.e., linking between video
sentences and slides) and heterologous (i.e., linking between video vignettes and text-
book sections/discussion threads) tasks is listed.

Linking systems (model, feature) Homologous Heterologous
Videos
to slides

Videos to
textbook

Videos to
discussions

Logistic regression BoW 63.3 66.0 31.3

CRF
BoW 71.7 69.3 32.1
BoW + HP 73.7 - -
BoW + word2Vec (+ HP) 74.7 71.1 33.3

mance of automated linking systems using various models and features is listed. Here

we also investigate the linking between video sentences and slides for the homologous

linking; as for heterologous task, in addition to the linking between video vignettes

and textbook sections, linking between vignettes and discussion threads is also stud-

ied. Similar to the experiment in Stat2.1x, we adopt sentence level F1 score as the

evaluation metric.

In this thesis, we utilize 6.00x to investigate generalizability of the proposed meth-

ods. Thus, in this experiment we only explore the system configurations which have

shown improvement in the experiment of Stat2.1x, and examine whether the im-

provement can be generalized to various courses and materials. Specifically, we study

three techniques which have been shown to be helpful above: 1) modeling contex-

tual dependency with transition features, 2) adding visual features to detect scene

changes in the alignment task, and 3) integrating lexical similarity features computed

from BoW and word2vec embeddings for encoding complementary information. Here,

we also start with systems using meta-data features7 and lexical features from BoW

embedding, and add other features incrementally for the investigation.

In Table 4.2 we observe that the three techniques also yield improvement. Com-

paring rows 1 and 2, CRF outperforms logistic regression consistently in the three

7Position features are deployed in all the three linking tasks, i.e., video segments to slides, text-
book, and discussions. The learner tagging features are also used in linking video segments and
discussions.
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tasks (8.4% in linking videos to slides, 3.3% in linking videos to textbook, and 0.8% in

linking videos to discussions). This improvement shows that the benefit of modeling

the contextual dependency can be generalized in these tasks. However, improvement

in linking between videos and discussions is relatively small as compared to other

tasks. We believe this is because the relations between videos and discussions are

distinct from videos and others. Lecture videos, slides, and textbook are created

by educators and aimed at transferring knowledge systematically. In contrast, most

content in forums is created by learners for resolving specific confusions. The topic

organization is very different between learner-created and educator-created materials.

Hence, encoding contextual dependency, which is aimed at improving linking predic-

tion by understanding topic organization in materials, is much less helpful in linking

videos to discussions.

Comparing rows 2 and 3 we can find that the visual features also yield improve-

ment in this programming course. Note that here we only explore the horizontal

projection descriptor in homologous task, since in our experiment in Stat2.1x, HP

yields better performance in homologous linking and none of the visual features is

helpful in the heterologous task. As compared to the results observed in Table 4.1,

we find that performance enhancement from HP is smaller (71.7% to 73.7% here and

81.3% to 85.8% previously). We surmise that this is because of the differences in the

video styles used in the two courses. We found in Stat2.1x that a large portion of

lecture videos is simply shots of slides; however in 6.00x there is also a great deal of

live coding demos and talking head sessions. The demos and talking head sessions

introduce noise into our visual features and make detecting slide changes more chal-

lenging. From these results, we conclude that the benefit of our visual features can

be generalized, but how much improvement the features can bring in depends on the

styles of underlying lecture videos.

We then further integrate the lexical features computed from BoW and word2vec

embeddings. In the table we can observe that the combination of two embeddings

also enhances the linking performance consistently (c.f., 73.7% to 74.7% in linking

videos to slides, 69.3% to 71.1% in linking videos to textbook, and 32.1% to 33.3% in
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Table 4.3: The comparison between the best performance of our automated linking
system (evaluated with F1 scores and listed in the first two rows) and the annotator
agreement (evaluated with kappa scores and listed in the third and fourth row) in
each linking task.

Homologous Heterologous
Videos
to slides

Videos
to textbook

Videos
to discussions

Automatic linking
(F1 scores, %)

Stat2.1x 86.7 47.2 -
600x 74.7 71.1 33.3

Annotator agreement
(Kappa scores, %)

Stat2.1x 86.5 59.9 -
600x 81.0 76.1 43.4

linking videos to discussions). These results imply that the complementarity of BoW

and word2vec embeddings could be a general fact found in different courseware; thus

the integration could yield generalized improvement over various courses.

From Table 4.1 and Table 4.2 we can observe that F1 scores range widely (the best

result of each linking task ranges from 33.3% to 86.7%). In order to investigate the

reason of this variation, we compare the best F1 scores to the annotator agreement

(described in detail in Section 3.1.4) in each linking task in Table 4.3. The first two

rows summarize the best performance of our automated linking systems in F1 scores,

and the following two rows list the labeling consistency among annotators evaluated

in terms of kappa scores. The kappa scores can be interpreted as a measurement

of how difficult and ambiguous the underlying linking task is for humans. In this

table we find that machine performance is highly correlated with the ambiguity of

the linking task. This finding is reassuring, especially for the video-to-discussion task

where only 33.3% F1 score is achieved, since a significant portion of difference between

the linking labeled by machines and humans might simply come from the ambiguity

of tasks, which is much less harmful to learner experience than linking irrelevant

learning objects.

In this section, we show that the CRF-based linking method can integrate in-

formation from various features and yield better performance than the conventional

logistic regression method. By modeling the contextual dependency and combining

the complementary BoW and word2vec embeddings, we observe consistent improve-
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ment in all the linking tasks we studied. As for the visual features, they are only

helpful in homologous tasks. In these experiments, we show the extensibility of CRF

to various features. We believe this characteristic is a great fit to our problem. Since

both MOOCs and machine learning are booming in recent years, the styles of learn-

ing materials and algorithms for understanding content are ever-changing. With the

extensibility our model can grow with new machine learning techniques, pedagogies,

and content by adding corresponding features (e.g., our CRF can take posterior prob-

abilities or classification results predicted by a neural network as features). Besides,

the improvement across courses and materials to some extent demonstrates the gen-

eralizability of the proposed method, which is crucial for our framework to be widely

applied in various conditions.

In the previous discussion we also examined the correlation between model perfor-

mance and annotator agreement. We surmise that it is likely that the low F1 scores

will not harm learner experience by much. In the next section, we attempt to provide

evidence for this conjecture with a user study experiment.

4.5 Evaluation: benefit in learning

We then investigate the second issue of evaluation: can linking generated automat-

ically still benefit learners? For this issue, we conduct a user study similar to what

we did in Section 3.4. We study learners’ performance when course materials are

presented with various strategies: presenting different types of materials separately

(i.e., presented in 𝑛𝑢𝑙𝑙 interface) or in linking by humans (i.e., 𝑙𝑖𝑛𝑘𝑖𝑛𝑔) or machines

(i.e., 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔). If similar performance improvement as described in Section 3.4

can be observed after replacing manually labeled linking with the one generated by

machines8, we can conclude that our automated linking system is beneficial to learn-

ers. In the following, we also study the effect of automated linking on learners by

learning tasks: search and retention.

8In this section, the best linking results achieved in Section 4.4 are used in the interface for
conducting a user study.

108



Table 4.4: Learner performance in the information search scenario in the study of
Stat2.1x. Performance is evaluated by the average searching time and average accu-
racy metrics, and measured within various cohorts using 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, or 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interfaces.

Average searching time (seconds) Average accuracy (%)
null linking auto linking null linking auto linking

Overall 206 152 162 69.2 69.5 69.5

Statistics Yes 166 147 154 71.1 70.5 70.0
No 295 160 178 64.9 67.1 68.0

MOOCs Yes 166 139 160 72.0 70.6 71.7
No 225 154 163 68.2 68.9 68.5

≥Bachelor Yes 198 163 167 70.7 70.6 70.0
No 208 136 151 67.5 68.5 68.3

4.5.1 How automated linking affects search

Here we investigate how the automated linking affects learners’ performance in the

information search scenario. Performance is also evaluated with two metrics: average

searching time and average accuracy. In Table 4.4 the performance in Stat2.1x is

summarized. The results of the 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interfaces are identical to the ones

discussed in Section 3.4.1. 𝐴𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 corresponds to the condition where learners

utilize an interface presenting automatic linking for accomplishing assigned tasks.

Except for the deployed interfaces, other experimental procedures in the study of

𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 are identical9. Moreover, to examine how automatic linking can benefit

learners, we also focus on the performance difference when various interfaces were

deployed. In Fig. 4-2 the improvement from 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

(black bars) as compared to 𝑛𝑢𝑙𝑙 is visualized. The upper panel corresponds to the

time reduction the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 can yield in different learner cohorts;

the lower panel shows the accuracy increase from the two interfaces. Furthermore,

the 95% confidence interval of the difference is also provided.

Similar to the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface, in Table 4.4 and Fig. 4-2 we can observe that

9We also collected 1,000 HITs for the same 10 questions on Amazon mechanical turk. Since a
between-subjects design is adopted, only online workers who did not participate in our experiment
with 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interfaces are allowed in the study. The study of 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 was conducted
three months after the experiment of 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interfaces was complete. Besides, the same
quality control mechanism is applied here.
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Figure 4-2: The improvement in search time (upper panel) and accuracy (lower panel)
when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) or 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (black bars) interface is used, with the
baseline of deploying 𝑛𝑢𝑙𝑙. Learning performance improvement is measured in the
study of Stat2.1x. The 95% confidence intervals (shown as error bars) and significance
test results (marked with red asterisk if the difference is statistically significant) are
also provided.

an interface driven by machine generated linking also helps learners finding informa-

tion with a shorter period of search time in general; as for the search accuracy, no

statistically significant difference can be found. Among the studied learner cohorts,

novice learners (subjects without prior knowledge in statistics, without prior expo-

sure to MOOCs, and without a degree higher than bachelor’s) as well as subjects with

a degree higher than bachelor’s show statistically significant improvement in search

time reduction. On the other hand, comparing the improvement yielded by 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, we find that in each cohort subjects using the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface

110



Table 4.5: Learner performance in the information search scenario in the study of
6.00x. Performance is evaluated by the average searching time and average accuracy
metrics, and measured within various cohorts using 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, or 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interfaces.

Average search time (seconds) Average accuracy
null linking auto linking null linking auto linking

Overall 443 349 360 87.7 89.5 90.4

Python Yes 419 323 352 90.3 90.3 93.0
No 463 378 365 85.6 88.6 88.6

MOOCs Yes 427 336 336 88.0 89.4 91.1
No 454 357 371 87.6 89.5 90.0

≥Bachelor Yes 472 359 353 89.5 91.5 92.3
No 399 331 370 85.1 86.2 87.4

consistently take less amount of time in search.

We also explore how automated linking affects search in 6.00x. The results are

summarized in Table 4.5. In this table, in addition to the learning performance re-

ported in Table 3.5, the result of the user study deploying the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface

is also listed10. Furthermore, we also visualize the performance difference when var-

ious interfaces were deployed in Fig. 4-3. The improvement (i.e., time reduction in

the upper panel and accuracy increase in the lower) from 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) and

𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (black bars) as compared to 𝑛𝑢𝑙𝑙 is presented.

In Table 4.5 and Fig. 4-3, we find that the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface also allows

learners to complete tasks with less time in most cohorts (except for subjects without

a bachelor’s degree), as compared to the 𝑛𝑢𝑙𝑙 interface. Search accuracy is also

improved in the entire group of subjects, subjects with or without experience in

Python, subjects with or without previous exposure to MOOCs, and subjects with

a bachelor’s degree or higher. Besides, comparing the improvements yielded by the

𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface, we can observe that they are highly correlated

and statistically significant in mostly the same cohorts (except for the time reduction

of subjects without a bachelor’s degree, the accuracy of subjects with experience in

10In this study, each experimental procedure except the deployed interface is the same as in
Section 3.4.1. 1,000 HITs for the same 10 questions have been collected on Amazon mechanical
turk. A between-subjects design is adopted. In this study we conduct the experiment with the three
interfaces (i.e., 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔) simultaneously. Additionally, the same quality
control mechanism is employed.
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Figure 4-3: The improvement in search time and accuracy when various interfaces
were used in the study of 6.00x. The improvement from using 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) and
𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (black bars) as compared to 𝑛𝑢𝑙𝑙 is plotted.

Python, and the accuracy of subjects with previous exposure to MOOCs).

From the user study results discussed above, we can observe that in most cases

the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface can still help learners in the search task, but generally

yield slightly less improvement than the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface (except for the accuracy of

the study of 6.00x). The observation is interesting: our results in Section 4.4 show

that some of the linking used in the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface is very different from the

one labeled by humans (e.g., the linking between videos and discussions in 6.00x);

however, based on our user study experiment, learners seem to be able to benefit from

both interfaces using somewhat different linking annotations.

We believe the user study results support our previous conjecture that even though
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there are some discrepancies between linking labeled by humans and machines, many

of the differences could come from the ambiguity of underlying linking tasks. There-

fore, both humans and machines make reasonable linking decisions, and learners can

benefit from both 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interfaces. However, from the results

we also believe that machines cannot reach the same depth of understanding of the

learning content as humans, and thus still make some linking errors which confuse

learners. Hence, usually less improvement in the learning performance is measured

when we replace human-labeled linking with the machine generated one. In Section

4.6, we will continue the discussion about the difference between linking labeled by

humans and machines, as well as look into the difference patterns to explain why

𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 is still helpful, but next we will investigate our other learning scenario:

concept retention.

4.5.2 How automated linking affects information memoriza-

tion

Here we explore how the automated linking affects learners’ performance in the con-

cept retention scenario. Performance is measured by the numbers of unique key-terms

in the essays submitted by learners. Table 4.6 compares the performance when an

𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface was deployed to the results when 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 or 𝑛𝑢𝑙𝑙 was used

(the ones reported in Table 3.6 in the experiment of Stat2.1x). The user study of the

𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface follows the same experimental procedures described in Section

3.4.2, e.g., collecting 1,000 HITs for the same 10 sampled topics on AMT, adopting a

between subjects design, and applying a plagiarism check for quality control11. More-

over, the performance improvement (increased number of key-terms) from 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

(red bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (black bars) as compared to 𝑛𝑢𝑙𝑙 is visualized.

Similar to the results in the information search scenario, automatic linking also

yields performance improvement in the retention task. As compared to subjects

assigned with the 𝑛𝑢𝑙𝑙 interface, learners who use 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 mentioned more key-

11This study was also conducted three months after the experiment of 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interfaces
was complete.
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Table 4.6: Learner performance in the concept retention scenario in the study of
Stat2.1x. Performance is evaluated by the number of unique key-terms in submitted
essays and measured within various cohorts using 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, or 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interfaces.

Number of unique key-terms
null linking auto linking

Overall 4.39 4.91 4.83

Statistics Yes 4.71 5.11 5.02
No 3.98 4.60 4.50

MOOCs Yes 4.83 5.14 5.07
No 4.27 4.77 4.75

≥Bachelor Yes 4.73 5.23 5.04
No 3.98 4.60 4.46

terms in their essays. The improvement is statistically significant in the entire group of

experimental subjects as well as among the novice learners. Moreover, if we compare

the improvement yielded by 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, we can also find that the latter

one has consistently a smaller increase in the number of key-terms.

The effect of automated linking on the retention task in 6.00x is also summarized

in Table 4.7. Columns of 𝑛𝑢𝑙𝑙 and 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 correspond to the results discussed in Ta-

ble 3.7. The learning performance observed in user study where the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 inter-

face is deployed is listed in the column 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔12. Additionally, the performance

difference observed when various interfaces were used is visualized in Fig. 4-5. The

increase in the number of key-terms from using 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

(black bars) as compared to 𝑛𝑢𝑙𝑙 is plotted.

From Fig. 4-5 and Table 4.7, we can find automatic and manual linking perform

similarly. Both of the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interfaces allow learners in each

cohort to mention more key-terms in their summary of assigned topics. However, at

95% confidence interval, the improvement yielded from the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface is

not statistically significant in the seven cohorts studied here.

Similar to what we found in the information search scenario, the user study re-

sult discussed here also shows that, disregarding the difference between the manual

12In the study, the same experiment setup is adopted, such as 1,000 HITs for the same 10 topics
and a between subjects design. Besides, the experiment with the three interfaces (i.e., 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔,
and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔) is conducted at the same time.
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Figure 4-4: The improvement in the number of unique key-terms contained by sub-
mitted essays when a 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) or 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (black bars) interface is used,
with the baseline of deploying 𝑛𝑢𝑙𝑙. Learning performance is measured in the study of
Stat2.1x. The 95% confidence intervals and significance test results are also provided.

and automatic linking, learners can benefit from both. The results provide addi-

tional evidence for our conjecture that many disagreements between the manual and

automatic linking come from the task ambiguity, and our CRF model still makes

reasonable decisions in linking learning objects. Hence, only a small degradation in

learning performance was found when manual linking was replaced by an automated

one.
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Table 4.7: Learner performance in the concept retention scenario in the study of
6.00x. Performance is evaluated by the number of unique key-terms in submitted
essays and measured within various cohorts using 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
interfaces.

Number of unique key-terms
null linking auto linking

Overall 8.07 8.56 8.39

Python Yes 8.64 9.09 8.74
No 7.64 8.20 8.14

MOOCs Yes 8.37 8.55 8.63
No 7.93 8.56 8.28

≥Bachelor Yes 8.60 9.13 8.77
No 7.21 7.91 7.88

*	

*	

*	

Figure 4-5: The improvement in the number of key-terms contained by submitted
essays when various interfaces were deployed in the study of 6.00x. The improvement
from using 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (black bars) as compared to 𝑛𝑢𝑙𝑙 is
visualized.
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4.6 Difference pattern analysis

In the previous section, we provide evidence that the automated linking can still

benefit learning, and that the low similarity between manual and automated linking

only causes a small degradation in observed learning performance. In this section, we

attempt to provide explanations for why automatic linking is also helpful in learning

although less, by looking into the difference pattern between manual and automatic

linking.

For the analysis, we choose the task of linking between video vignettes and dis-

cussion threads, which is the task of the lowest F1 score. We compare the linking

predicted by our best automated system to human annotation. In the comparison,

we first sampled 50 discussion threads from those threads which are linked to differ-

ent vignettes in human and machine labeling. After skimming through the sampled

threads, we summarize four difference patterns:

1. Pattern 1: only annotators linked some vignettes to the thread.

2. Pattern 2: only machines linked some vignettes to the thread.

3. Pattern 3: both machines and annotators linked some but not the same vi-

gnettes to the thread, and the non-overlapping vignettes belong to the same

lecture video.

4. Pattern 4: both machines and annotators linked some but not the same vi-

gnettes to the thread, and the non-overlapping vignettes belong to various lec-

ture videos.

We categorize the sampled 50 threads into the four patterns in Table 4.8. Here we

find that pattern 1 dominates in numbers. With the categorization, in the following

we analyze each pattern and how it can affect learning experience in order to explain

the user study results.

Pattern 1 includes 62% of the sampled threads. However, we believe that this

pattern has the least negative effect on learning experience among the four. Because
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Table 4.8: The number of threads categorized into the four difference patterns.
Pattern 1 Pattern 2 Pattern 3 Pattern 4

Number of threads 31 6 8 5

of the way we present learning content and visualize linking, in this pattern, the

𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface simply regresses to the 𝑛𝑢𝑙𝑙; since the thread is not linked to

any video vignette by machines, this thread is presented under a separate discussion

tab. Although the regression increases the difficulty to access this thread, the user

experience in interacting with the rest of the learning materials is almost the same.

Thus, learners can still access desired information from the rest of the materials to

accomplish their tasks as they did in the interface driven by manual linking.

To illustrate this difference pattern and give a concrete example, we consider one

specific thread from our set of 31. We present the content of this thread and its

linked vignette in Fig. 4-6. In the left panel of the figure, we see that the discussion

is about how dictionaries enable quick web searches in Google. In the right panel we

observe that our TAs related this discussion to a vignette13 introducing the basic idea

of a dictionary, while the machines linked nothing to this post. Thus, in our 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

interface, when learners are surveying this vignette of dictionary introduction, this

discussion about web search will be rendered under the video, while no discussion

will be presented in the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface. However, the discussion only adds

fun facts and additional information to the vignette. Without the post, the concept

of a dictionary can still be properly learned from the vignette. This example implies

that the effect of difference pattern 1 on learning can be negligible.

In addition, we examine the relation between this difference pattern and task

ambiguity. We found that in 19 out of the 31 threads one of the three annotators14

agrees with the machines (i.e., linking nothing to the thread). From this result we

believe that many disagreements between machines and annotators come from the

13Note that since a video vignette is defined as the video chunk aligned to one slide page, the
content in a vignette can be well summarized by the aligned slide. For simplicity, here we show the
aligned slide to represent the vignette.

14Note that the manual annotation is obtained by taking majority voting over the labeling of three
TAs.
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Discussion	thread	

Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-6: An example of difference pattern 1. The left panel shows a sampled
discussion thread; the right panel presents the vignette linked to the thread by human
annotators (upper right) and our CRF algorithm (lower right). The condition where
none of the vignettes is linked is represented by ∅.

conservativeness of the machines: our automated algorithm is inclined not to link

videos and threads when the linking is ambiguous. This fact also supports our belief

that this difference pattern has little negative effect on learning, since learners can

focus on the case when the relation between learning objects is strong.

Six out of the 50 sampled threads are categorized into the second pattern. This

pattern deteriorates learning experience and makes learners confused. In this case,

the machines relate some vignettes which have been decided irrelevant by annotators

to discussion threads. Under these vignettes the discussion threads are shown in our

𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface. Learners have to spend their cognitive capacity to under-

stand these unrelated threads and might feel confused about why these threads are

presented. Therefore with this type of difference pattern, learning performance is

lowered.

We also give an example of difference pattern 2. In Fig. 4-7, we consider one

specific thread from the set of six on the left; the content of the linked vignette

labeled by humans and machines is presented on the right. The thread is meaningless

discussion, but the machines link it to a vignette describing a hash function. It

119



Discussion	thread	
Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-7: An example of difference pattern 2. The left panel shows a sampled
discussion thread; the right panel presents the vignette linked to the thread by human
annotators (upper right) and our algorithm (lower right).

is obvious that this type of difference may distract or confuse learners, and thus

deteriorate their learning experience.

We also examine the question of whether all disagreements result from algorithmic

errors or whether some of them result from task ambiguity. We found that in the

case of difference pattern 2 one of the three annotators agrees with the machine’s

linking decision in 2 out of the 6 threads. Hence, we believe that not all differences in

this category are the result of machine mistakes, and only a portion of the differences

causes a decline in the learners’ performance.

As for the third pattern, 8 out of the 50 sampled threads are classified to this

category. Similar to the first pattern, we also believe this difference pattern has little

negative effect on learners with our interface design. In this pattern, although the

machines and humans link different vignettes to a thread, these vignettes belong to

the same lecture video. With our interface design, this thread is presented under the

same video but only aligned to different parts of the video scrubber. Therefore, this

difference pattern does not change the user experience by much15.

An example of difference pattern 3 is shown in Fig. 4-8. As we can see, the thread

15In 4 out of the 8 threads, one of the three annotators link the same video vignettes as machine
does. This fact also supports our claim that our automated system links reasonable vignettes and
thus it is very likely the disagreement does not affect learners negatively.
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Discussion	thread	
Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-8: An example of difference pattern 3. In this example, the thread (left
panel) is linked by humans and machine to two vignettes (right panel) in the same
lecture video. The two vignettes are closely related to each other, and the difference
in presenting these two ways of linking is minor.

is relevant to both vignettes linked by humans and machine. When the two various

ways of linking are presented in our interface, qualitatively the difference is minor,

which supports our previous claim.

A total of 10% (5 out of 50) of the sampled threads are categorized as the last

pattern. As we discussed about pattern 2, this difference category also makes the

learner confused and deteriorates learning experience, since in 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 the dis-

cussion threads are linked to lecture videos which are totally different from the ones

labeled by the humans, and here our automated linking algorithm agrees with any

one of the three annotators in only 1 out of the 5 threads. Thus, we conclude that

this difference pattern is less probably caused by task ambiguity, and it is very likely

that the videos only linked in our automated system are irrelevant to the threads.
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Discussion	thread	

Linked	vigne3e	(Humans)	

Linked	vigne3e	(Machine)	

Figure 4-9: An example of difference pattern 4. Here, humans and machine link two
vignettes (right panel) from various lecture videos to the same discussion the thread
(left panel).

Fig. 4-9 shows an example of difference pattern 4. In the posts here, learners

discussed how the Python interpreter utilizes symbol tables to keep track of variable

bindings in recursion, which is explained exactly in the vignette linked by our TAs.

In contrast, our CRF algorithm links this thread to a less relevant vignette belonging

to another lecture video describing global variables. Learners may be distracted by

the discussion of the symbol tables when viewing this video.

From the analysis we can find that, although the similarity between automated

and manual linking is low in some tasks, many of the differences resulting from the

task ambiguity and the linking labeled by both machine and humans are reasonable,

or the differences can be properly presented in our interface. Such differences could be

recovered or ignored easily by learners and thus have little effect on user experience.

Therefore, we also observe considerable improvement in learners’ performance when

the 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface is deployed. Note that this analysis was done in the task

of linking video vignettes and discussion threads. We believe that the conclusion can
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be generalized to the linking of other materials, since similar automated algorithms

were utilized.

4.7 Comparison with the edx interface

In studies above, we have shown that, when we present learning content to learners,

if we are able to visualize the relations among content, learners can achieve better

performance in completing assigned learning tasks. Furthermore, we demonstrated

that we can obtain the relations from human annotators or the proposed CRF linking

algorithm. These studies were conducted by comparing the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and auto link-

ing interfaces to the 𝑛𝑢𝑙𝑙 interface, which is a baseline that implements the conven-

tional strategy for delivering learning materials online. In this section, we investigate

whether our linking framework can provide added value to the interface currently

deployed in MOOC platforms (here we choose the edX website as our baseline).

4.7.1 The edx interface

For the user study being deployed in the consistent condition, rather than using the

edX website directly, we also implement 𝑜𝑢𝑟 𝑒𝑑𝑥 interface to conduct the study on

AMT. A screenshot of this interface is presented in Fig. 4-10. Here, we reproduce

the design of the interface and the layout of content from the edX website in order to

offer learners a user experience that is identical to the one they used when engaged

in a state-of-the-art MOOC platform. The only difference between our 𝑒𝑑𝑥 interface

and the real platform is that here we additionally provide the search mechanism for

accessing course materials; this is also done in order to create a consistent comparison

to our 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and 𝑛𝑢𝑙𝑙 interfaces.

In this interface, instructors can upload a deck of lecture slides beneath the paired

lecture video. The associated slides are presented as a link under the video player for

learners to refer to. In the edX website, to motivate learners engaging in discussions

and to organize the enormous forum posting, learners are allowed to post under a

lecture video to specify the relation between their discussions and the lecture; these
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Figure 4-10: The implemented 𝑒𝑑𝑥 interface that reproduces the design and layout of
the edX website to offer learners a user experience similar to that of a real MOOC,
except that we also give the additional search tool for accessing course materials.
This interface is used to investigate how much added value our linking framework can
provide for the state-of-the-art MOOC platforms.

posts are directly rendered under the video for future learners. This functionality is

also implemented in our 𝑒𝑑𝑥 interface.

From the design of the 𝑒𝑑𝑥 interface we can find that this interface can be inter-

preted as another realization of educational content linking on different information

levels: lecture slides are linked on the lecture level rather than the page level as they

are in the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface; the relation between discussions and lecture videos is

inferred from learners’ choice rather than the content these materials contain; the

textbook is still presented separately. Thus, as compared to the 𝑛𝑢𝑙𝑙 interface we

build, the 𝑒𝑑𝑥 interface serves as a baseline in the comparative study for a different

purpose. We implement the 𝑒𝑑𝑥 interface in order to investigate how much added
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value our linking framework can provide for the state-of-the-art MOOC platforms. In

contrast, we utilize the 𝑛𝑢𝑙𝑙 interface for exploring the fundamental research question

asked in this thesis: can linking help learning?.

4.7.2 The user study, results, and discussions

To examine the value of the proposed linking framework can add to the state-of-

the-art MOOC platform, we conduct another user study. In the study, again we

published 1,000 HITs on AMT for each of the two learning scenarios, and learners in

this study had to use the 𝑒𝑑𝑥 interface to accomplish tasks. By comparing the learning

performance measured here to the results from the 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

interfaces, we can investigate whether our educational content linking framework

can potentially improve the current MOOC design. Note that in the study here,

except for the deployed interface for completing tasks, the remaining experimental

setup is identical to the other user studies discussed in this thesis (e.g., the same 10

sampled questions and topics, the same number of rewards, the same quality control

mechanism, and the between-subjects design). Furthermore, for simplicity in this

chapter we only investigate 6.00x for our study, and the user study was conducted

together with the other three (i.e., 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔) interfaces.

Table 4.9 summarizes learner performances (evaluated by the average searching

time and accuracy) in the information search scenario. Columns 1 to 3 and 5 to 7

correspond to the performance measured when the 𝑛𝑢𝑙𝑙, 𝑙𝑖𝑛𝑘𝑖𝑛𝑔, and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

interfaces are utilized. These results are identical to the ones reported in Table 4.5.

The user study result when the 𝑒𝑑𝑥 interface was deployed is listed in columns 4 and

8. Here, we employ the same dividing criteria for stratifying learners’ background

(i.e., prior knowledge, experience in MOOCs, and highest degree).

Since our goal is to examine how much added value our educational content link-

ing framework can bring us, we again visualize the differences of performance yielded

by different pairs of interfaces in Fig. 4-11. In this figure, the improvement (i.e., time

reduction in the upper panel and accuracy increase in the lower) from 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red

bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (black bars) as compared to 𝑛𝑢𝑙𝑙, as well as the improvement
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Table 4.9: Learner performance in the information search scenario in the study of
6.00x. In addition to the results reported in Table 4.5, performance (evaluated by the
average searching time and average accuracy) measured when the 𝑒𝑑𝑥 interface was
used is listed.

Average search time (seconds) Average accuracy
null linking auto linking edx null linking auto linking edx

Overall 443 349 360 401 87.7 89.5 90.4 88.6

Python Yes 419 323 352 352 90.3 90.3 93.0 89.5
No 463 378 365 443 85.6 88.6 88.6 87.9

MOOCs Yes 427 336 336 386 88.0 89.4 91.1 89.3
No 454 357 371 409 87.6 89.5 90.0 88.2

≥Bachelor Yes 472 359 353 393 89.5 91.5 92.3 90.8
No 399 331 370 411 85.1 86.2 87.4 85.8

Table 4.10: Learner performance in the concept retention scenario in the study of
6.00x. In addition to the results reported in Table 4.7, the number of unique key-
terms in submitted essays measured when the 𝑒𝑑𝑥 interface was used is listed.

Number of unique key-terms
null linking auto linking edx

Overall 8.07 8.56 8.39 8.03

Python Yes 8.64 9.09 8.74 8.47
No 7.64 8.20 8.14 7.68

MOOCs Yes 8.37 8.55 8.63 8.51
No 7.93 8.56 8.28 7.76

≥Bachelor Yes 8.60 9.13 8.77 8.67
No 7.21 7.91 7.88 7.23

from 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (blue bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (orange bars) as compared to 𝑒𝑑𝑥 is pre-

sented. By looking at the blue and orange bars, we can understand the potential of

our linking framework in improving the content delivery in current MOOC platforms.

The red and black bars are plotted here for comparison to our previous results, and

they are identical to the ones in Fig. 4-3.

We report the observed performance in the concept retention scenario in Ta-

ble 4.10. In addition to the results discussed in Table 4.7, which are listed in columns

1 to 3 here, the performance measured for learners who use the 𝑒𝑑𝑥 interface for their

tasks is presented in column 4. Additionally, to visualize the added value our linking

framework may yield, we also plot the differences in the number of key-terms when

various interfaces were deployed in Fig. 4-12.
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Figure 4-11: The improvement in search time and accuracy when various interfaces
were deployed. The improvement from using 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (red bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔
(black bars) as compared to 𝑛𝑢𝑙𝑙, as well as the improvement from 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (blue
bars) and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 (orange bars) as compared to 𝑒𝑑𝑥 is plotted.

From the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑑𝑥 and 𝑎𝑢𝑡𝑜− 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑑𝑥 bars (i.e., the blue and orange

bars) in Fig. 4-11, we find that our linking interfaces (driven by either manual or

automated linking) allow learners to search for content using less time but with sim-

ilar accuracy. Comparing each 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑑𝑥 and 𝑎𝑢𝑡𝑜 − 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑑𝑥 bar to the

corresponding 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑛𝑢𝑙𝑙 (i.e., red) and 𝑎𝑢𝑡𝑜 − 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑛𝑢𝑙𝑙 (i.e., black) one,

less time reduction is observed in general, and the reduction is significant in fewer

groups of subjects. For the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑑𝑥 and 𝑎𝑢𝑡𝑜− 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑑𝑥 bars of subjects

with experience in Python, subjects with previous exposure to MOOCs, and subjects

with a bachelor’s or higher degree, as well as the 𝑎𝑢𝑡𝑜− 𝑙𝑖𝑛𝑘𝑖𝑛𝑔− 𝑒𝑑𝑥 bar of subjects

127



*	
*	

*	
*	

*	
*	

Figure 4-12: The improvement in the number of unique key-terms contained by sub-
mitted essays when various interfaces were deployed. The bars are pictured in the
same way as in Fig. 4-11.

without previous exposure to MOOCs, the differences are not statistically significant.

However, their counterparts in the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑛𝑢𝑙𝑙 and 𝑎𝑢𝑡𝑜 − 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑛𝑢𝑙𝑙 bars

are significant. Results here suggest the added value our 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and 𝑎𝑢𝑡𝑜 𝑙𝑖𝑛𝑘𝑖𝑛𝑔

interface may provide for the current MOOC platforms. Furthermore, in the search

accuracy, only the 𝑎𝑢𝑡𝑜 − 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑒𝑑𝑥 bars of the entire group of subjects, sub-

jects with experience in Python, and subjects without previous exposure to MOOCs

show statistically significant improvement. As compared to the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 − 𝑛𝑢𝑙𝑙 and

𝑎𝑢𝑡𝑜−𝑙𝑖𝑛𝑘𝑖𝑛𝑔−𝑛𝑢𝑙𝑙 bars, statistically significant difference is observed in much fewer

cohorts. These observations imply that the 𝑒𝑑𝑥 interface is a better baseline (in terms

of yielding better learning performance) than the 𝑛𝑢𝑙𝑙 one. The reason is self-evident:

the 𝑒𝑑𝑥 interface implements some ideas of linking, which have been shown to be able

to make course materials more accessible and improve learning.

Our linking interfaces can also yield more key-terms consistently over each cohort

as compared to the interface reproducing the current MOOC design (Fig. 4-12). Fur-

thermore, in this learning scenario, the 𝑛𝑢𝑙𝑙 and 𝑒𝑑𝑥 interfaces seem to perform simi-

larly, and therefore the difference between the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔−𝑒𝑑𝑥 and 𝑎𝑢𝑡𝑜− 𝑙𝑖𝑛𝑘𝑖𝑛𝑔−𝑒𝑑𝑥

bars to the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔−𝑛𝑢𝑙𝑙 and 𝑎𝑢𝑡𝑜− 𝑙𝑖𝑛𝑘𝑖𝑛𝑔−𝑛𝑢𝑙𝑙 ones in the same cohorts is much

less obvious than in the information search scenario. We surmise that this difference
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results from the nature of the two scenarios. By comparing the 𝑛𝑢𝑙𝑙 and 𝑒𝑑𝑥 interfaces,

one of the most significant changes is that in the 𝑒𝑑𝑥 interface relevant discussions are

stacked beneath the lecture video. Discussions are usually initiated because of con-

fusions about specific problems or concepts in the learning content. These discussion

threads contain useful information to solve questions asked in the search scenario.

However, information in these posts is fractional and thus it is challenging to learn

about a topic systematically from these posts. Therefore, the improved navigation

over discussions is much more helpful in our search tasks.

Our results show that our educational content linking framework can potentially

allow learners to find desired learning content faster than the current MOOC inter-

face design with comparable accuracy; with our proposed interfaces, subjects can

also retain more information after learning with the assigned topic using the same

amount of time. Since the 𝑒𝑑𝑥 interface also partially implements our linking idea,

we surmise that the improvement results from several differences in the design of in-

terfaces. First, the page-level alignment between slides and lecture videos can better

visualize the structure and emphasize the sub-goals of videos. Second, the relation

between discussions and videos tagged by learners can be noisy and distract other

learners; considering the topical relevance between content contained in the two types

of materials can control the quality of tagging. Third, some discussions might be re-

lated to only parts of the videos. This information is not available in the current

MOOC platforms. Fourth, it might be worthwhile to visualize the relations between

lecture videos and external resources, such as a recommended textbook. We believe

that, by integrating these features properly into the current platform design, learning

experience in MOOCs can be enhanced significantly.

4.8 Conclusions

This chapter investigates our second research question: can linking be generated at

scale? For this question, we formulate the linking annotation as a sequential tagging

problem, and propose an automatic content linking algorithm based on CRFs. In the

129



algorithm, to infer the linking a variety of features are utilized: lexical similarity, tran-

sition, visual, and meta-data features. By analyzing the difference pattern between

automated and manual linking, we find that many differences result from the task

ambiguity and have little negative effect on learners. Hence, in our user research we

observe similar improvement in learning performance when the auto linking interface

replaces the 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 one. We conclude that our linking framework can be realized at

scale with an automated algorithm.

Furthermore, we also compare our 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 and auto linking interfaces to the re-

production of the edX website, and explore how these interfaces support learners in

completing assigned tasks. In the user study we also demonstrate that, as compared

to the current design in MOOC platforms, our educational content linking framework

can still help learners find information faster and retain more concepts. We believe

that the linking framework we propose enriches the current MOOC interface design.

We envision engaging learners with more accessible course materials and better learn-

ing experience powered by content linking.
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Chapter 5

Conclusions

This dissertation introduced educational content linking: a framework for organizing

course materials to make content more accessible for learners. To conclude, in this

chapter we will summarize the main contributions of this thesis and discuss possible

directions for future work.

5.1 Summary and contributions

This thesis contributes to the research community by proposing the framework of

educational content linking. This framework provides better navigation over learning

materials and improves learning experience. Around the framework we conduct two

lines of studies to answer two research questions: 1), if we are able to link learning

materials with humans, would the linking help learners?, and 2), can the courseware

be linked at scale with machine learning techniques?

With the exploration of the first question, this thesis makes three main contribu-

tions: the linking annotation, the interface design, and the evaluation.

∙ The linking annotation. We provide a definition of linking and a formula-

tion of labeling relations among learning materials as an alignment and binary

classification problem. We design the workflow of annotating linking with re-

searchers or with collaboration between course staff and online workers. Linking

is an abstract concept and this contribution makes it a reality.
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∙ The interface design. We design an interface to deliver learning content with

the visualization of linking among the materials. The interface can provide

pedagogical benefits through improved content navigation.

∙ The evaluation. We conduct a large-scale user study with online workers and

two learning scenarios to investigate specific learning mechanisms: search and

retention. We argue that this study can measure the benefits of pedagogical

intervention reliably with reasonable cost, when the underlying learning goals in

the study are clear to participants. The study result shows that the proposed

linking framework can indeed improve learning outcomes in the investigated

search and retention scenarios.

In the second part of this thesis, we investigate the second research question, and

make two main contributions: the automated linking algorithm and the comparison

to a currently deployed MOOC interface.

∙ The automated linking algorithm. We propose an automated linking al-

gorithm based on CRFs and multimodal features. In our large-scale user study

we demonstrate that, although there are some differences between the manually

and automatically generated linking, most differences can be properly presented

in our interface or easily ignored by learners, and thus the interface powered

by automated linking can still lead to better learning performance than the

unlinked interface. This result suggests that the proposed linking framework

can be realized at scale with an automatic algorithm based on machine learning

techniques.

∙ The comparison to a currently deployed MOOC interface. In addition

to the conventional unlinked content delivery, we explore the added value our

linking framework can potentially provide to a currently used MOOC interface.

The user research result suggests that the framework proposed here can possibly

enrich the design of the studied MOOC interface, engage learners with more

accessible learning content, and improve learning outcomes.
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5.2 Future work

This dissertation shows the potential of educational content linking in engaging learn-

ers with better learning experience. This conceptual idea can be further verified,

refined and applied to various circumstances to improve learning.

5.2.1 Learning platforms of the future

Our user research results demonstrate several possible ways in which linking can

offer learners a better experience. We envision that the future learning platforms

can engage learners with more accessible learning content. While in this thesis we

investigate linking in two learning tasks, search and retention, there are many other

aspects of learning that can potentially benefit from our proposed framework. For

instance, in solving the problem sets or performing online lab experiments, with better

organized learning materials, learners are more likely to receive proper assistance

from the content when they are confused. Furthermore, our studies were conducted

with online workers. Research implementing the proposed experimental pipeline in

a MOOC environment is valuable to clarify the mechanism by which linking helps

actual learners.

Instead of reproducing our entire implementation of linking, separate components

in our pipeline also inspire directions of design for future platforms. For example,

the automated linking algorithm can be applied to filter noisy posts and improve

the quality of discussions; instructors can utilize the algorithm to discover relevant

learning content to enrich or reorganize their lectures. Our presentation of lecture

videos provides design implication for better video interaction with visualized struc-

ture and subgoals. The design of our 𝑙𝑖𝑛𝑘𝑖𝑛𝑔 interface suggests a neat way to offer

recommended readings. These components lead to new avenues to improved MOOC

platforms.
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5.2.2 Towards a variety of course subjects and material types

This thesis focuses on two STEM courses: statistics and the Python programming lan-

guage. However, as we mentioned in Chapter 1, there have been over 4,000 MOOCs

on the Web with subject fields ranging from science and engineering to humanities

and law. In addition to the topics, these MOOCs span different applied pedago-

gies, course designs, and methods for content organization or delivery. "Whether our

linking framework can be applied to other subject fields", "which fields, pedagogies,

designs, and content organization can benefit from linking", and "how various condi-

tions interact with the idea of linking" are several interesting questions that should

be explored. We believe a wider deployment of this framework in various MOOCs

can elucidate these questions.

With a wider deployment, the involved types of course materials can also vary. For

example, some MOOCs may put strong emphasis on problem sets, while others may

stress on online labs. For the proposed framework to be of more general use, we also

have to answer questions such as "how to extend our implementation, from linking

annotation to visualization, to accommodate these variations" and "whether and how

the conclusions made in this dissertation are affected by using various materials".

Our initial foray of adding forums to our implementation can be good illustration

showing how to investigate these questions.

5.2.3 More sophisticated algorithm for linking at scale

In Chapter 4, we have demonstrated that many differences between manual and

automated linking have little negative effect on learners. However, there is still a

considerable portion of disagreement which may confuse learners. We believe that a

more sophisticated machine learning model can achieve deeper and more comprehen-

sive understanding of the course materials, and thus generate linking which is more

similar to the human annotated one.

One promising model is the attention-based neural network. This model was first

proposed for machine translation [7]; for each word in the sentence of the target
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language, this neural network learns a weight for each word in the source sentence.

The weight represents how relevant the source word is in predicting the target word.

Applying this model to our linking problem, the target tokens to be predicted are the

linking configuration (e.g., the linked slide index or whether two objects are linked),

and the source tokens are two sequences of learning objects to be linked. This neural

network can place attention on informative learning content when deciding linking

configuration; such a mechanism is similar to how humans generate the linking.

More informative features are also capable of yielding better linking results. In

addition to the information extracted from learning content, such as the lexical and

visual features utilized in our method, user behavior is another excellent resource

for predicting linking. In this thesis, we demonstrate the usage of learner-generated

tags about discussion posts in the linking algorithm. Aside from these tags, click log

and browsing history are very likely to help linking inference. Kim shows that the

aggregation of learners’ video interaction can reveal the underlying video structure

and provide implication for video authoring and interface design [67]. We believe that,

by grouping the browsing history and summarizing patterns of clickstream, we can

understand the relevance among learning materials and extract informative features

for linking prediction.

Beyond the machine learning techniques, crowdsourcing (or learnersourcing) is an

alternative for linking at scale. Li and Mitros proposed a learning module where

learners can collaboratively recommend additional learning objects and manage the

recommended materials for future learners [88]. We envision a linking system which

allows learners and machines to author, edit, and manage the linking of course ma-

terials in a collaborative way.

Furthermore, portability is another issue that should be investigated towards a

scalable linking system. In this thesis, we adopt a 5-fold cross validation technique to

obtain training and testing sets from the same MOOC. This experimental setup makes

people wonder why we need the automated linking, since the manual labeling of the

entire MOOC is available. Hence, more realistic conditions should be explored; for

instance, the automated algorithm is trained and tested on the same course subjects
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but different offerings, or even on different MOOCs.
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Appendix A

Sampled problems and topics for the

user study

A.1 Sampled problems

A.1.1 Problems of Stat2.1x

The following problems were used in the information search scenario of user study of

Stat2.1x.

Q1 The table below shows the distribution of the ages of people who died by

gunfire in the U.S. during one week. Based on the table, how to compute the height

of each bar in the histogram.

age (years) percent

15-25 44

25-35 20

35-55 16

55-85 20

Q2 If both X and Y axis have the same unit (e.g., cm, degree, pound, ...), do I

have to convert them into standard unit (i.e., z-score) in order to calculate correlation

coefficient (r)?
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Q3 The average height of a large group of children is 43 inches and the SD is 1.2

inches. The average weight of these children is 40 pounds and the SD is 2 pounds.

The correlation coefficient (r) between the two variables (height and weight) is 0.65.

What is the equation of regression line for the two variables?

Q4 The average height of a large group of children is 43 inches and the SD is 1.2

inches. The average weight of these children is 40 pounds and the SD is 2 pounds.

The correlation coefficient (r) between the two variables is 0.65. How to estimate the

height of a person whose weight is 44 pounds with the equation of regression line?

Q5 What is the formal definition for X𝑡ℎ percentile, where X is a general, real

number between 0 and 100?

Q6 When we compute the residual, the error is the distance between an actual

point and the regression line. Should we use the vertical distance (i.e., draw a vertical

line from the actual point to the regression line, and take the distance between the

actual point and the intersecting point), perpendicular distance (i.e., from the actual

point, draw a line which is perpendicular to the regression line), or the horizontal

distance?

Q7 What is the range of value of correlation coefficient (r)? Can it be 5, negative

number, etc.

Q8 What is the definition of a football-shaped scatter plot? How does a football-

shaped scatter plot look like?

Q9 In a stem and leaf plot, we have elements something like:

16 | 1234

17 | 89

18 | 56

What exactly does this mean?

Q10 In the following, we show the distribution of midterm scores in a statistic

class. Please find the ’inter-quartile range’.
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midterm scores percent of students

0-60 10

60-75 22

75-85 30

85-95 13

95-100 25

A.1.2 Problems of 6.00x

The following problems were used in the information search scenario of user study of

6.00x.

Q1 x is a tuple and x = (’John’, ’Hello’, ’A’, ’Hi’). What is the value of

x[2]?

Q2 What error (if any) is raised when the following code snippets are attempted?

mylist = [10, 20, 30]

mylist.index(11)

A: ValueError

B: TypeError

C: SyntaxError

D: NameError

E: No error is raised

Q3 What method is called when an object is created?

A: self

B: obj.self

C: init

D: __init__

E: new

Q4 True or False?

- A Python class is an example of data abstraction.
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Q5 A dictionary is an immutable object because its keys are immutable.

A: True

B: False because its keys can be mutable

C: False because a dictionary is mutable

Q6 True or False?

- Declarative knowledge refers to statements of fact and imperative knowledge

refers to ’how to’ methods.

Q7 True or False?

- Every problem which is computable can be computed with a set of six

primitive operations.

Q8 For the following explanation of type of programmatic model, fill in the blank

with the appropriate model the definition describes.

A ______ model is one in which randomness is present, and variable states

are not described by unique values, but rather by probability distributions.

The behavior of this model cannot be entirely predicted.

A: continuous

B: deterministic

C: discrete

D: dynamic

E: static

F: stochastic

Q9 x is a list and x = [1, 4, 3, 0]. Specify the value of x after executing the

following expression:

» x.append(7)

Q10 Samples were taken from a distribution, and the histogram of those samples

is shown here:
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Which of the following distributions were the samples taken from?

A: Uniform Distribution

B: Exponential Distribution

C: Normal Distribution

A.2 Sampled topics

A.2.1 Topics of Stat2.1x

The following topics were used in the concept retention scenario of user study of

Stat2.1x.

1. Regression

2. Residual

3. Normal distribution

4. Percentile

5. Histogram

6. Standard deviation
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7. Mean

8. Scatter plot

9. Median

10. Correlation

A.2.2 Topics of 6.00x

The following topics were used in the concept retention scenario of user study of

6.00x.

1. Operation

2. Function

3. Computation complexity

4. Dynamic programming

5. Graph

6. Object

7. Iteration

8. Class

9. Recursion

10. Sort
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