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An Experimental Analysis on Integrating
Multi-Stream Spectro-Temporal, Cepstral and Pitch
Information for Mandarin Speech Recognition

Yow-Bang Wang, Shang-Wen Li, and Lin-shan Lee, Fellow, IEEE

Abstract—Gabor features have been proposed for extracting
spectro-temporal modulation information from speech signals,
and have been shown to yield large improvements in recognition
accuracy. We use a flexible Tandem system framework that in-
tegrates multi-stream information including Gabor, MFCC, and
pitch features in various ways, by modeling either or both of the
tone and phoneme variations in Mandarin speech recognition.
We use either phonemes or tonal phonemes (tonemes) as either
the target classes of MLP posterior estimation and/or the acoustic
units of HMM recognition. The experiments yield a comprehen-
sive analysis on the contributions to recognition accuracy made
by either of the feature sets. We discuss their complementarities
in tone, phoneme, and toneme classification. We show that Gabor
features are better for recognition of vowels and unvoiced conso-
nants, while MFCCs are better for voiced consonants. Also, Gabor
features are capable of capturing changes in signals across time
and frequency bands caused by Mandarin tone patterns, while
pitch features further offer extra tonal information. This explains
why the integration of Gabor, MFCC, and pitch features offers
such significant improvements.

Index Terms—Pitch, spectro-temporal features, tandem system,
toneme.

I. INTRODUCTION

O VER the past few decades, Mel frequency cepstral
coefficients (MFCCs) and perceptual linear prediction

(PLP) features have been commonly used as features for speech
recognition. However, both MFCCs and PLPs consider only
very local information due to the short window length (typi-
cally 25 ms) used when extracting these features. In an MFCC
framework, the mel-filter bank is followed by a discrete cosine
transform (DCT), which extracts spectral modulation informa-
tion from the signal, thereby compressing the high-dimensional
spectrogram to the relatively low-dimensional cepstral domain.
Although useful, adding delta and acceleration terms still does
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not capture well the rich information present in successive
observations.
In recent years, much work has been put into improving the

performance of speech recognition by including longer con-
text and temporal modulation information in features; this is
different from conventional MFCC and PLP features. Begin-
ning in the mid-1990s, Hermansky and Morgan proposed ex-
tracting temporal trajectory information with RelAtive SpecTrA
(RASTA) features [1], which estimate the modulation of sig-
nals in a longer time interval over the critical band spectrogram
using temporal filters, as well as multi-resolution RASTA [2],
which further analyzed the temporal modulation using a bank of
band-pass filters with varying resolutions. The power of these
features came largely from the temporal modulation informa-
tion. In addition, the MFCC Tandem system was also very suc-
cessful in utilizing a much longer context window to capture the
temporal modulation information of speech signals with the aid
of artificial neural networks (ANN) [3]. Further modified ANN
structures, such as hierarchical or parallel multilayer percep-
trons (MLP), and MLPs with two or three hidden layers, were
shown to yield even better performance [4]–[9].
It has also been found that spectro-temporal modulation plays

an important role in speech signals. Intonation, coarticulation,
and transitions across phonemes naturally produce sloped pat-
terns on the two-dimensional spectrogram. This is supported by
recent findings in physiological experiments which show that a
large percentage of neurons in the primary auditory cortex of
mammal species respond to signals with different spectro-tem-
poral modulations [10]. These findings led to substantial efforts
in parameterizing those behaviors: autoregressive models and
frequency-domain linear prediction have been used to extract
spectro-temporal features [11], [12], and approaches using in-
dependent component analysis and non-negative sparse coding
have also been proposed [13]. These approaches have all re-
sulted in large improvements.
Parameterizing the log mel-spectrogram with 2-D Gabor fil-

ters is another way to extract the spectro-temporal behavior
of signals [14]–[16]. Kleinschmidt and Gelbart employ a fea-
ture-finding neural network (FFNN) to iteratively adjust the pa-
rameters of Gabor filters for different recognition data [14]. In
contrast, Zhao and Morgan select Gabor filter parameters by
dividing the temporal modulation frequency from 1 to 16 Hz
and the spectral modulation frequency from zero to two cy-
cles per octave equally on a logarithmic scale [15]; this has
been found to most closely correspond to human speech per-
ception [17]. They divide Gabor filters into several streams,
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each of which covers a subset of Gabor filters within a spe-
cific spectro-temporal modulation frequency band. This multi-
stream approach can be viewed as an ensemble of several recog-
nition systems that yields better performance than each indi-
vidual system [18]. Recently, this multi-stream approach has
been extended to use even more powerful spectro-temporal fea-
tures and further improve the performance with an increased
number of feature dimensions [19]–[21].
Pitch is another type of information in the speech signal that

MFCC/PLP features are not to capture. The frequency of the
pitch of human speech roughly falls between 50 Hz to 500 Hz.
The window shift between frames for extracting MFCC/PLP
is not short enough to resolve pitch information temporally;
also, because the bandwidth of the filters applied in frequency
domain for extracting MFCC/PLP is generally wider than
pitch, pitch information is also smoothed away spectrally. Pitch
may not be a critical feature for languages which are not tonal
(English, for instance). Mandarin Chinese, however, is a tonal
language, in which every syllable is assigned a tone; the tone
carries lexical meaning, which helps distinguish ambiguous
words. For decades, pitch information has been known to be
useful in Mandarin speech recognition [22]–[24]. The works
that take into account pitch and tones can be roughly divided
into explicit and embedded tone modeling [25], as summarized
below. In explicit tone modeling, the prosodic and acoustic
evidence is assumed independent given word sequences.
The likelihood scores based on one set of these features are
weighted-summed with the other, usually done either during
decoding or by rescoring the word lattices or N-best lists
obtained in first-pass ASR [26], [27]. However, the indepen-
dence assumption of prosodic and acoustic evidences could be
over-simplified, and rich information between them could be
completely lost. In contrast, in embedded tone modeling we
append tone-related features to spectral features, and model the
tonal acoustic units within existing recognition frameworks.
Embedded tone modeling as such may overlook long-term
prosody information in the speech signal. To alleviate such
oversight, some works have applied the Tandem system with
a long context window [28]–[31]; others have incorporated
embedded tone modeling with explicit tone modeling and
showed that these two types of approaches are complementary
[32]–[36].
Recently, we parameterized the spectro-temporal modulation

information following Zhao and Morgan’s 2-D Gabor filter
approach [15], and integrated it with MFCCs at the phonetic
posterior level using simple or hierarchical MLPs [37], [38]. We
found that these two sets of posteriors are complementary—one
with longer spectro-temporal modulation information in the
mel-spectrogram and the other with shorter temporal corre-
lation information in the cepstral domain—and yield better
discriminability over different types of phonemes. We further
integrated them with pitch features in Mandarin speech recog-
nition, using tonal phonemes (or tonemes) for MLP posterior
estimation and tonal acoustic units for HMM recognition in
Tandem system. This yielded improved performance [39].
In this paper, we use a flexible Tandem system framework to

perform a more complete experimental analysis over different
feature integration configurations for Mandarin speech recogni-

Fig. 1. Flow chart of (a) feature extraction, (b) posterior derivation and (c) the
Tandem system. The gray dotted parts are optional in the experiments. Results
with and without pitch information are both reported.

tion. We examine different combinations of MLPs based on dif-
ferent assumptions of dependency among feature sets and clas-
sification targets. We also analyze the complementarity among
different sets of features for different classification targets. The
rest of this paper is organized as follows. The feature extraction
procedure and Tandem system framework are respectively ex-
plained in Sections II and III. Detailed experimental analysis is
then presented in Section IV. We conclude in the last section.

II. FEATURE EXTRACTION

Fig. 1(a) illustrates how we extract the multi-stream
spectro-temporal, cepstral, and pitch features from the speech
signal. After pre-emphasizing the speech signal, taking win-
dowed-FFT, passing through the mel-filter bank and taking the
logarithm, the log Mel-spectrogram is obtained. The window
length and shift are 25 ms and 10 ms respectively in win-
dowed-FFT. Both multi-stream spectro-temporal and cepstral
features are extracted from the log Mel-spectrogram; pitch
features are extracted directly from time-domain signal. Below
we briefly present the different sets of features used in this
work and how they are extracted.

A. Cepstral Features

For cepstral features we use 39-dimensional MFCCs, in-
cluding c0 to c12 plus derivatives and accelerations. This
39-dimensional MFCC feature set is used both for HMM
acoustic modeling and also to derive the posteriorgrams (a
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TABLE I
PARAMETER VALUES FOR FOUR GABOR FILTER SETS

vector of posterior probabilities) with MLP; this is discussed
further in Section III.

B. Spectro-Temporal Features

As shown in the right stream of Fig. 1(a), the log mel-spectro-
gram is convolved with 2-D Gabor filters to extract spectro-tem-
poral modulation information, or Gabor features. The impulse
response of a Gabor filter is the product of a Gaussian
envelope and a modulation term :

(1)

where

(2a)

(2b)

and , , , and are the four parameters that determine
the shape of each filter. The parameter values follow Zhao and
Morgan [15] and are listed in Table I. In the upper half of Table I,
and are set to and for constant modulation cy-

cles in a Gaussian window, while (temporal modulation) and
(spectral modulation) of the Gabor filters are selected based

on human knowledge. These parameter sets divide the temporal
modulation frequency from 1 to 16 Hz and the spectral modu-
lation frequency from zero to two cycles per octave equally on
a logarithmic scale; this was found to most closely correspond
to human speech perception [17]. In the lower half of Table I
we also set either or to zero to produce spectral-or tem-
poral-only modulation filters. Because of the zero in the denom-
inator, or is additionally chosen.
As also shown in Table I and Fig. 1(a), these Gabor filters are

divided into four streams (Set1 to Set4), each corresponding to
one Gabor filter bank, from low to high spectro-temporal mod-
ulation frequency bands [15].

C. Pitch Features

Pitch information is extracted using the Snack Sound Toolkit
[40]. Since pitch is present only in voiced segments, the Snack
toolkit assigns zero pitch to unvoiced frames. In unvoiced re-
gions the pitch contour can be interpolated into non-zero values
to make it smoother and to avoid the variance problem in recog-
nition [33]. More precisely, the log-F0 contour is refined using
cubic spline interpolation and then normalized by mean subtrac-
tion per utterance. For pitch features, we use pitch and its first
and second derivatives. The frame length and shift of the Snack
toolkit and of MFCC/Gabor feature extraction are synchronized
so that these feature sets can be simultaneously generated for
each frame. In the following sections, the pitch feature set is de-
noted as “F0.”

III. TANDEM SYSTEMS

Below we use a flexible Tandem system framework to de-
termine the recognition performance achievable by the multi-
stream features mentioned above. In HMM training and recog-
nition, we utilize a set of posteriors derived from different sets
of features, different MLPs, and some post-processing.

A. System Architecture

In the Tandem system, we estimate the posteriors for Man-
darin phonemes or tonemes (tonal phonemes) using the three
sets of features illustrated in Section II and Fig. 1(a), with dif-
ferent configuration of MLPs. TheMLP classification target can
be either monophone (mono-phoneme) or mono-toneme. The
output of each MLP is a vector of posteriors, with each element
corresponding to the posterior probability of a specific mono-
phone or mono-toneme given the input features of the present
time frame.
As shown in the right stream of Fig. 1(b), each of the four

streams of Gabor features obtained frame-by-frame is fed indi-
vidually into an MLP, with pitch features (including those ob-
tained from the previous and following four frames) augmented
or not. We then merge the four streams of posteriors by taking
the geometric mean over the four vectors frame-by-frame. We
denote the resulting vectors as F0 Gabor posteriors if pitch
features are augmented. We similarly augment the MFCC fea-
tures, including those of the previous and following four frames,
with pitch features, and feed them into an MLP. The resulting
posteriorgrams are denoted as F0 MFCC posteriors. In the
case of no pitch feature augmentation, the posteriors obtained
are simply referred to as Gabor or MFCC posteriors. Note that
for the MLP input, each MFCC and F0 feature vector of a frame
is concatenated with its previous and following four frames; the
Gabor feature vectors, however, are not.
To utilize the complementarity between Gabor and MFCC

features investigated previously [38], [39], we further merge
the F0 Gabor (or Gabor alone) and F0 MFCC (or MFCC
alone) posteriors by concatenation, shown at the bottom of
Fig. 1(b), and denote the results as F0 Gabor MFCC pos-
teriors (or simply Gabor+MFCC posteriors if pitch features are
not included).
In the Tandem systems, the posteriors are first transformed

by a logarithm function which maps the range of the value be-
tween zero and one to a negative real number.We then use linear
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discriminant analysis (LDA) transformation for dimension re-
duction and decorrelation. We retain 95% of the total variance.
Both steps are employed for better Gaussian modeling in the
following HMMs. We further perform mean and variance nor-
malization (MVN) on the after-LDA log-posteriors just as done
in previous studies [21], [38]. Although the noise level is rel-
atively low in the corpus used here, the MVN step helps to
reduce the mismatch between training and testing data due to
speaker variation, and also results in distributions better mod-
eled as Gaussians.
The normalized posteriors are then concatenated with MFCC

frame-by-frame, and used in HMM training and recognition in
the Tandem system as shown in Fig. 1(c). In this way, we have
Tandem systems that differ in the posteriors obtained with dif-
ferent input feature sets. For analysis purposes, the target units
for MLP posterior estimation and HMM recognition can be ei-
ther tonal or not, as we will explain below.

B. Different MLP Combinations for Toneme Posterior
Derivation

In prosodic modeling for Mandarin speech recognition, the
following condition is often assumed for simplicity:

(3a)

(3b)

where and represents phoneme and tone sequences and
and acoustic and prosodic feature sequences of an utter-

ance, respectively. The first approximation in (3a) assumes the
phoneme and tone sequences are independent given acoustic
and prosodic feature sequences, and the second approxima-
tion in (3b) assumes phoneme sequences depend only on
acoustic feature sequences, while tone sequences depend only
on prosodic feature sequences. Similar assumptions may also
apply to features of frames. If we let and represent the
phoneme and tone classes and for MFCC and Gabor features
and for pitch features, all for a frame, the terms in (3a) and
(3b) (
and ) are posteriors of phoneme and/or tone classes,
given some feature sets of a frame as discussed above. We
experimentally analyze results when (3a) and (3b) are applied
to frames.
Fig. 2 illustrates three different approaches to implementing

any of the MLPs in Fig. 1(b), either for MFCC or Gabor fea-
tures, with or without pitch features, for deriving toneme pos-
teriors. Fig. 2(a) shows a monolithic MLP used to calculate
the posterior probability of all the tonemes, corresponding to
finding on the left hand side of (3a) by jointly
modeling tone and phoneme. In contrast, Fig. 2(b) shows that
we may use two MLPs, one for tone classification to obtain

and the other for phoneme classification to obtain
, and combine the results by simply multiplying

them together as , as in (3a). One may ques-
tion that the toneme posteriors estimated as Fig. 2(a) could be
dominated by the acoustic features due to their much higher di-
mensionality than pitch features, and makes the comparison be-
tween different assumptions of independence less convincing.

Fig. 2. Using different combinations of MLPs to derive toneme posteriors.

For more complete examination, we also tested using the hi-
erarchical MLPs as shown in Fig. 2(c), where we concatenate
the output of the phoneme MLP and tone MLP to train yet an-
other MLP for toneme classification. In this way the acoustic
and prosodic posteriorgram features have closer dimensionality
before being concatenated and fed into the toneme MLP, as a
comparison to Fig. 2(a).
Note that (3a) is only an assumption of approximation for the

purpose of reducing the number of model parameters given lim-
ited training data. If sufficient training data is available, the pos-
teriors of tonemes can certainly be better inferred using a mono-
lithic MLP by considering the dependency between phonemes
and tones given acoustic and pitch features. Yet given insuffi-
cient data, the resulting monolithic MLP could suffer from over-
fitting. In that case using two compact MLPs may be a good
compromise, assuming some conditions of independence.
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IV. EXPERIMENTS

In this section, we describe the experimental setup, results,
and analysis.

A. Experiment Setup

The experiments were conducted on the MATBN (Mandarin
Across Taiwan-Broadcast News) corpus, available via the As-
sociation for Computational Linguistics and Chinese Language
Processing (ACLCLP) [41]. The training set included 13 hours
of gender-balanced broadcast news collected in Taiwan from
November 2001 to December 2002. A one-hour set of broad-
cast news collected in 2003 was used for testing.
We started with 36 Mandarin phonemes (monophones), 23

consonants and 13 vowels, and expanded each vowel to its tonal
variants while leaving the consonant part unchanged (we as-
sumed the consonant parts do not carry tones). We thus ob-
tained a set of 75 tonemes as the MLP training target. As will
be reported below, the 36 phonemes were also used as the MLP
training target for comparison. Note that in Mandarin there are
four lexical tones plus a neutral tone, but here only the four lex-
ical tones were included in the toneme set; the neutral tone was
mapped to tone-3. Because there were a very small number of
syllables produced as the neutral tone, adding it to the toneme set
caused a data imbalance problem [30], [42], [43]. Therefore the
“Tone MLP” in Fig. 2(b) was trained to classify feature vectors
into five targets: consonant, tone-1, tone-2, tone-3, and tone-4;
the “Phoneme MLP” was trained to classify 36 phonemes in-
cluding 23 consonants and 13 vowels. In Fig. 2(a), the “Toneme
MLP” was trained to classify feature vectors into 75 tonemes.
We essentially used the intra-syllable right-context-depen-

dent Initial-Final (RCDIF) as the unit of acoustic models
(HMMs) in the Tandem systems; we also tested triphones for
some baseline systems for comparison. RCDIF has been widely
used as the unit for Mandarin speech recognition, especially
for tasks with limited quantities of training data. The Initial is
the onset consonant of a syllable, and the Final is the vowel
(or diphthong) part plus an optional medial or nasal ending.
Because syllables in Mandarin Chinese have Initial-Final
structure, only the Initials need be right-context-dependent to
encode intra-syllable dependency; all Finals can be context-in-
dependent. This yields good recognition accuracy even with
limited quantities of training data. Of course tri-phones (or
even quin-phones) offer better performance, but this comes
at the cost of much higher computation/corpus requirements.
Since the purpose of this work is to analyze the contribution of
different sets of features in Mandarin speeh recognition, rather
than to achieve the highest possible accuracy, as done in most
studies [30], RCDIFs instead of tri-phones or quin-phones were
used for a relatively small corpus. It is believed that the analysis
obtained here can be equally extended to acoustic models based
on units that take into account more context dependency.
Each RCDIF unit (tonal or not) was modeled as an HMM

of three states. 147 RCDIF units (112 right-context-dependent
Initials plus 35 contect-independent Finals) were expanded to
257 tonal RCDIFs in the same way monophones were expanded
to tonemes, including the original tone-independent Initials and
tonal Finals, as the recognition target for HMM training. In the
experiments below, the 147 RCDIF toneless units were also

used as HMM units for comparison. The RCDIF-level training
labels were based on forced alignment results.
We used a word-based trigram language model trained with

the newswire text corpus, consisting of 170 million Chinese
characters collected from Central News Agency (CNA) in
2001 and 2002 [44], and processed with Katz smoothing [45]
using the SRI Language Modeling Toolkit (SRILM) [46]. Our
73K-word lexicon was also generated from this text corpus
[47]. To further generate a tonal lexicon, we used the tones of
each word provided in the Chinese Electronic Dictionary from
the ACLCLP [48], and added the tone labels into our original
lexicon.

B. Experimental Results (I): Recognition Error Rate

We list in Table II the character error rate (CER) for each
recognition experiment for different configurations. Row (a)
and (e) are the conventional HMM system using the triphones
and RCDIFs as the HMM units respectively, with MFCC fea-
tures and serves as the non-Tandem baseline. The other rows
are all for Tandem systems. The first column lists the feature
sets used for estimating the posteriors, and the second and third
columns show respectively the MLP target (36 phonemes or 75
tonemes) and HMM units for recognition (147 RCDIFs or 257
tonal RCDIFs) in each Tandem system, as explained in detail
in Section III.
In rows (b)–(d) and (f)–(h), the MLP targets are the 36

phonemes without respect to tone, and the HMM units are
respectively the triphones and RCDIFs, both without tones.
Row (b) and (f) are the conventional MFCC Tandem system
and row (c) and (g) are the Gabor Tandem system [15]. The
Gabor Tandem system in row (c) outperforms MFCC in row
(b) with triphones as HMM units, while the two Tandem
systems in rows (f)(g) with RCDIFs as HMM units achieved
comparable results; and integrating MFCC and Gabor features
by concatenation at the posterior level (row (d) and (h) as
illustrated in the bottom of Fig. 1(f)) enhanced the performance
for both triphone and RCDIF systems. This is clearly because
of the complementarity of the cepstral and spectro-temporal
features as noted in previous work [16], [38]; for both MLP
classification and HMM recognition, although the performance
of the individual MFCC and Gabor posteriors depends on the
type of phone, their integration always outperforms either one
individually. Since in these baseline systems using the RCDIFs
as HMM units (rows (e)–(h)) outperforms triphones (rows
(a)–(d)) by roughly 7% in general, we continue the experiments
using RCDIFs as HMM units.
Replacing HMM units with tonal RCDIFs in rows (i)–(k)

yielded consistent improvements among the three sets of poste-
riors; rows (i)(j) yielded statistically significant improvements
over rows (f)(g); row (k) achieved statistically significant im-
provements over rows (f)–(h). Here the confidence level of the
significance test was set to 95%. This shows that using tonal
RCDIFs as HMMunits allowed the HMMs to learn the variation
of MFCCs and posteriors across different tones and improved
the performance. Note this also implies Gabor and MFCC fea-
tures may possess tonal information; otherwise better results
would not have been achieved if the Tandem system could not
distinguish vowels with different tones via Gabor and MFCC.
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More evidence is presented of this inference in the following
analysis.
In rows (l)–(n), we replaced the MLP targets with tonemes.

Gabor toneme posteriors, row (m), achieved statistically signif-
icantly better performance than the phoneme counterpart, row
(j); but the MFCC toneme posteriors, row (l), did not, with re-
spect to row (i). A combination of the two posteriors, row (n),
yielded statistically significant improvement over row (k). We
analyze the results as follows:
First, because MLP training with phoneme targets as in rows

(i)–(k) was mainly aimed at discriminating between phonemes,
some tonal clues were inevitably lost in the posteriors. Changing
MLP targets from phonemes to tonemes thus helped to learn
more tonal information at the front-end (rows (m) and (n) vs. (j)
and (k)). Also, comparing rows (m) and (n) to (j) and (k), we see
more improvement (2.1% to 1.8%) than for rows (j) and (k) to
(g) and (h) (1.0% to 0.8%). Because rows (j)(k) and rows (g)(h)
used posteriors that do not take into account tones, the tonal
HMM units are limited in their ability to discriminate tones.
Next, although the improvement from row (f) to (i) verified

that MFCCs carry tonal information, from row (i) to (l) MFCC
toneme posteriors offered little additional benefit. On the other
hand, obviously Gabor toneme posteriors retained more infor-
mation for modeling the tonal targets in HMMs and yielded
improvements from row (j) to (m). Furthermore, the benefits
from changing recognition targets into tonal ones for MLPs and
HMMs are additive (from rows (g)(h) to (j)(k) to (m)(n)).
In rows (o)–(q), we report the results when the MLP input

features are augmented with F0 as in the gray dotted parts in
Fig. 1(f). We can see that adding pitch features boosted the
performance consistently over rows (l)–(n). The improvements
from rows (l) to (o), (m) to (p) and (n) to (q) were statistically
significant. Because the pitch features were extracted directly
from the signals, they clearly offered additional information to
theMFCC andGabor features used above, which were extracted
from mel-spectrogram.
Finally in row (r) and (s), we changed all MLPs in Fig. 1 from

monolithic MLP in Fig. 2(a) to the combination of two MLPs
in Fig. 2(b) and the combination of three MLPs in Fig. 2(c) re-
spectively, with all other settings unchanged as in row (q). The
CER using two MLPs was further reduced to 16.2%, which was
a statistically significant improvement. This was the best per-
formance achieved with the present experimental setup, with
5% absolute or 23.6% relative CER improvement compared to
the conventional Tandem system baseline in row (f). The im-
provement from row (q) to (r) was obviously due to the re-
duced number of parameters to be estimated in the expert MLPs
as compared to the monolithic MLP with the relatively small
corpus, and resulted in more reliable posteriors. On the other
hand, the CER using three MLPs was only slightly reduced to
16.9%, which was not a statistically significant improvement
over row (q). This further shows that estimating phoneme and
tone posteriors separately could be better when limited training
data is given.

C. Experimental Results (II): Frame-Level Classification by
MLP

After showing the recognition results, we investigate the
frame-level classification accuracies obtained with different

MLP classifiers constructed with different input features and
different classification targets. First, the frame accuracies of
the four Mandarin tones and the total are illustrated in Fig. 3.
To calculate these frame-level tone accuracies, for each frame
we excluded the consonants and summed the posterior prob-
abilities for all the rest of tonemes having the same tone but
varied phoneme parts. Therefore for each frame only four
probabilities were obtained for the four tones despite there
being 75 tonemes. We then classified the tone for each frame
following the maximum a posteriori (MAP) criterion on the
tone posteriors.
The general relationships among bars (1)–(3) in Fig. 3 re-

mained essentially unchanged in bars (4)–(6) for all four tones
and the total. In bars (1)–(3) for each tone and the total, the
Gabor features (bar(2)) always resulted in significantly better
tone classification accuracy than MFCC (bar(1)). Because
MFCC was much worse than Gabor, adding MFCC to Gabor
(bar(3)) was worse than Gabor alone (bar(2)) in tones 1, 2,
3 and total. The only exception was for tone 4, in which the
accuracy for both MFCC and Gabor were 70% or above. With
additional pitch features (bars (4)–(6)), the tone accuracy was
consistently enhanced in every tone and every feature set.
An interesting observation is that the classification accuracy

using F0 MFCC (bar(4)) is still inferior to using Gabor fea-
tures only (bar(2)) for all the four tones and the total. Intuitively
the Mandarin tones differ primarily in their pitch patterns, yet
the Gabor features extracted as shown in Fig. 1 did not retain
pitch information, because the window shift (10 ms) used was
not short enough to resolve the pitch information temporally,
while the bandwidth of the Mel-filters were wider than pitch
so the pitch information was also smoothed away spectrally.
This implies that different Mandarin tones result in not only
different pitch patterns, but also different spectro-temporal
patterns; i.e., the Mandarin tone is not just a purely prosodic
phenomenon, but carries acoustic information as well. We may
assume that when a speaker produces patterns with varying
pitch, some parts of the vocal tract are actually influenced
simultaneously, which means varying pitch patterns also results
in varying acoustic feature patterns. Obviously the Gabor filters
with different sloped patterns across the two-dimensional time
and frequency bands extracted such acoustic feature patterns
well. Therefore, approximating the frame-wise tone posterior

by can be lossy, because it ignores the
dependency from the acoustic features, as in the second term
of (3b).
That also explains why in general Gabor features were better

than MFCCs in classifying the tones. Because the two-dimen-
sional Gabor filters with different sloped patterns over the
spectrogram responded to different spectro-temporal modu-
lation, the Gabor features were more sensitive than cepstral
features to frequency component changes across the time and
frequency band. Gabor features are thus capable of capturing
more information of varying acoustic patterns needed for tone
classification.
Of course, pitch features were also helpful for tone classifi-

cation even with the presence of Gabor features which clearly
parameterized considerable spectro-temporal modulation com-
ponents. Pitch features always provide additional tonal informa-
tion from the speech signal directly, and benefits the discrim-
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TABLE II
CER FOR EACH RECOGNITION SYSTEM WITH VARIOUS FEATURES AND ACOUSTIC UNITS. 36 PHONEMES

OR 75 TONEMES FOR MLP TARGET, AND 147 RCDIFS OR 257 TONAL RCDIFS AS HMM UNITS

Fig. 3. The frame-level tone accuracy of different features used with MLP for
tonemes.

inability over the tones with MLPs. But since both Gabor and
pitch features carry tonal information, their complementarity is
not as extensive as MFCC and pitch features. In Fig. 3 we note
that the improvement from bar (1) to (4) is more significant than
from bar (2) to (5). In the recognition accuracy in Table II we
note a similar situation: the improvement from row (l) to (o) is
more obvious than that from row (m) to (p).
In Fig. 4 we show the frame-level accuracy for three different

phoneme types (unvoiced consonants, voiced consonants, and
vowels) and their total. To calculate the phoneme accuracy, sim-
ilar to Fig. 3 but in a different way, for each frame we summed
the posterior probabilities of all tonemeswith the same phoneme
but varied tones. Thus, 36 frame-wise phoneme posteriors were
obtained for the 36 phonemes for MAP classification, although
there were 75 tonemes. In each phoneme type, the first three
bars (1)(2)(3) are for MFCC features, the next three (4)(5)(6)
for Gabor, and the last three (7)(8)(9) for MFCC Gabor. In
each section of the three bars, the first bar is for MLP with 36
phonemes as targets directly, while the other two bars are for the
75 tonemes. The third bar in each section is with F0 features as
input in addition.

Fig. 4. Frame-level phoneme accuracy of different MLP targets and input
features.

We can see that for unvoiced consonants, vowels, and the
total, Gabor posteriors (the middle three bars (4)–(6)) outper-
formed MFCC (the first three (1)–(3)), and their integration
(the last three (7)–(9)) helped still more; for voiced consonants,
MFCC (bars (1)–(3)) were superior to Gabor (bars (4)–(6)),
and their integration (bars (7)–(9)) performed even better.
Consistent with previous findings [38], [39], this shows the
complementarity among Gabor andMFCC features in phoneme
recognition (i.e., Gabor and MFCC features are respectively
stronger for different types of phonemes), and explains why
integrating them yields improvements. A similar situation can
be found in the recognition results in Table II: for example,
rows (b)(c) are comparable but row (d) is significantly better.
However, different MLP targets (phoneme or toneme in bars
(1)(2)) or pitch feature concatenation (bars (3)) resulted in
very similar phoneme accuracies. This supports the assumption
that the frame-wise posterior probability may be
approximated by ignoring the pitch information in
the first term of (3b). Although phoneme classification may
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Fig. 5. Frame-level toneme accuracy of different features used with MLP for
tonemes.

benefit less from the pitch features, using toneme posteriors as
Tandem features still offered more information to the following
HMM as discussed above.
Fig. 5 illustrates the frame-level toneme accuracy for dif-

ferent features, i.e., the accuracy of the combination of tone
and phoneme was considered. Consistent with the trends we
found in the above analysis, Gabor (bars (3)(4)) outperformed
MFCC (bars (1)(2)), and their integration (bars (5)(6)) improved
still more. Also, augmenting F0 features boosted the accuracy.
Note that concatenating F0 features with Gabor (bars (4)) re-
sulted in better toneme accuracy than concatenatingMFCCwith
Gabor (bar (5)), although the dimensionality of the MFCC fea-
ture vector was much larger than that of the pitch feature vector
(39 9 vs. 3 9). This again highlights the importance of pitch
features in toneme recognition for Mandarin Chinese.

V. CONCLUSION

We offered a comprehensive analysis on spectro-temporal,
cepstral, and pitch features, and their application in a Mandarin
speech recognition task. We analyzed carefully the contribu-
tions made by each feature set to the recognition accuracy and
the complementarity between different sets of features, based on
the experimental results. We designed a Tandem system frame-
work to flexibly integrate different sets of features extracted
from speech signals, including cepstral, spectro-temporal, and
pitch features, and also to model the tone and phoneme varia-
tion simultaneously (tonemes for MLP and tonal RCDIFs for
HMM) in the experiments. We also investigated how tone and
phoneme accuracies are influenced by these features. The results
indicate that 2-D Gabor filters are capable of capturing vowel,
unvoiced consonant, and tonal information in the spectral-tem-
poral domain, and that both Gabor and pitch features are com-
plementary to the conventional MFCC features in boosting the
accuracy of Mandarin speech recognition.
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