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Abstract 

We propose an improved Tandem system for tonal language 

speech recognition. Three different types of features, cepstral, 

spectro-temporal and pitch features, are integrated for model-

ing tone and phoneme variation simultaneously. Tonal pho-

nemes (or tonemes) are used for MLP posterior estimation, 

and tonal acoustic units for HMM recognition. In our experi-

ments conducted on Mandarin broadcast news, a 19.3% rela-

tive CER reduction was achieved over the conventional 

MFCC Tandem baseline. With different training acoustic units, 

we analyze the complementarity among the three types of fea-

tures in tone, phoneme, and toneme classification. 

Index Terms: spectro-temporal features, pitch, Tandem sys-

tem, LVCSR 

1. Introduction 

Mandarin Chinese is a tonal language, in which every syllable 

is assigned a tone, and the tone has lexical meaning that helps 

distinguishing ambiguous words. In recent years, much work 

has been reported which incorporated tone information in 

large vocabulary continuous Mandarin speech recognition and 

achieved significant improvement. Such work can be roughly 

divided into two categories: explicit and embedded tone mod-

eling [1]. In the former, tones and phonemes were modeled 

independently and then combined through including likelih-

oods of tone models in acoustic scores [2] or post-processing 

on the word lattices [1, 3]. In contrast, embedded tone model-

ing appended the tone-related features to spectral features and 

modeled the tonal acoustic units with the existing automatic 

speech recognition (ASR) framework [4, 5]. The introduction 

of Tandem systems [6] greatly improved the performance of 

embedded modeling [7]; the smoothed log-pitch features were 

concatenated with PLP features, a context window of the 

augmented features was used to capture the long-term infor-

mation of tones and phonemes, a multi-layer perceptron (MLP) 

then transform those features to posteriors for tonal acoustic 

units, and the posteriors serve as observations for ASR sys-

tems based on Hidden Markov Models (HMMs). Recently, the 

original input features of MLP were incorporated with the 

modulation spectrum representations extracted from a bank of 

temporal filters [8] and showed even larger performance gain 

[9]. 

Contrary to temporal modulation extracted by context 

window or temporal filters, spectro-temporal modulation also 

plays an important role in speech signals. Intonation, coarticu-

lation, and transition across phonemes naturally produce 

sloped patterns on the 2-D spectrogram. This is supported by 

recent findings in physiological experiments which showed 

that a large percentage of neurons in the primary auditory cor-

tex of mammal species respond to signals with different spec-

tro-temporal modulations [10]. These findings motivated sub-

stantial efforts in parameterizing those behaviors: 2-D Gabor 

filters were used for filtering the spectro-temporal modulation 

from spectrogram [11, 12]; autoregressive model and frequen-

cy domain linear prediction were utilized to extract the infor-

mation [13]; approaches using independent component analy-

sis and non-negative sparse coding were also proposed [14]. 

These researches all resulted in significant improvement. Late-

ly, even more powerful spectro-temporal features with in-

creased feature dimensions were shown to improve further [15, 

16]. 

Previously, we parameterized the spectro-temporal mod-

ulation information following Zhao and Morgan's 2-D Gabor 

filter approach [12] and integrated it with MFCCs at the pho-

netic posterior level [17]. We analyzed the complementarity 

between the two posteriors and demonstrated the improvement 

from integrating the two. Here, we integrate spectro-temporal 

features with pitch and cepstral features, and use tonal pho-

nemes (or tonemes) for MLP posterior estimation and tonal 

acoustic units for HMM recognition in Tandem system. Be-

cause each tone varies with different sloped pattern in spectro-

gram, the spectro-temporal features offer additional informa-

tion. Thus, improved performance in task with Mandarin Chi-

nese was achieved. We also investigate the benefit respective-

ly offered by the three types of features (i.e. spectro-temporal, 

pitch, and cepstral features) when used with tonal acoustic 

units. 

2. Proposed approach 

Here we introduce the three types of features and the frame-

work of using tonal acoustic units in our Tandem recognition 

systems. 

2.1. MFCC features 

The cepstral features we use here are MFCCs obtained with a 

25ms window and a 10ms shift. The 39-dimension feature 

vectors include c0 to c12 plus derivatives. Each vector is then 

concatenated with its previous and following four feature vec-

tors as the input for MLP. 

2.2. Pitch features 

Smoothed log-pitch estimate plus its first and second deriva-

tives are extracted [18]. Nine neighboring frames are concate-

nated for a 27-dimension vector as the input of MLP (referred 

to as pitch features F0 below). 

2.3. Spectro-temporal features 

We use 2-D Gabor filters to extract the spectro-temporal mod-

ulation information. The impulse response of Gabor filter G(t,f) 

is 
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where σt, σf, ωt, and ωf are the four parameters that decide the 

shape of each filter. Per previous work [17], we selected the 

parameter set to divide the temporal modulation frequency 

from 1 to 16 Hz and the spectral modulation frequency from 

zero to two cycles per octave equally on a logarithmic scale 

[12], which was found to most closely correspond to human 

speech recognition [19]. These Gabor filter parameters were 

further divided into four streams, each corresponding to one 

Gabor filter bank, to cover from low to high spectro-temporal 

modulation frequency bands [12, 17]. As shown in the upper 

part of Fig. 1, we convolve the log mel-spectrogram of speech 

signals with the four filter banks and thus obtain four streams 

of spectro-temporal features for MLP training. 

2.4. Tandem systems 

In the lower part of Fig. 1, we show how to estimate the post-

eriors for the tonemes using features mentioned above with the 

aid of artificial neural networks (ANN). Each stream of spec-

tro-temporal features are respectively concatenated with pitch 

features F0 mentioned above at the frame level. Each stream of 

the augmented features are fed into an MLP with the tonemes 

as its training target. The MLP output is a vector of posteriors; 

each element corresponds to the probability of a specific to-

neme given the input features for the present time frame. We 

then merge the four streams of posteriors by taking the geome-

tric mean over the four vectors frame by frame. We denote the 

resulting vectors as F0+Gabor posteriors and use them in the 

following system. We similarly augment the MFCC features 

with F0 and train an MLP. The output vectors are denoted as 

F0+MFCC posteriors. Due to the complementarity between 

Gabor and MFCC features investigated previously [17], we 

further merge the F0+Gabor and F0+MFCC posteriors by tak-

ing the geometric mean over the two, obtain an even better 

estimation for posteriors, and denote them as 

F0+Gabor+MFCC posteriors. In addition, Gabor, MFCC and 

Gabor+MFCC (geometric-mean merging of the two) post-

eriors are also obtained where we trained the MLP without 

pitch feature F0 for comparison. 

 

 

Figure 1: The generation of F0+Gabor posteriors. 

The posteriors are first transformed by a logarithm func-

tion which maps the range of the value between zero and one 

to negative real. We then use linear discriminant analysis 

(LDA) transformation for dimension reduction and decorrela-

tion. We retain 95% of the total variance. Both steps are em-

ployed for better Gaussian modeling in the following HMM 

system. As pointed out in the previous study [16, 17], we fur-

ther perform the mean and variance normalization (MVN) on 

the after-LDA log-posteriors. Although the noise level is rela-

tive low in the corpus used here, the MVN step helps reducing 

the mismatch between training and testing data due to speaker 

variation and also results in distributions better modeled as 

Gaussians. 

The resulting normalized posteriors are then concatenated 

with the MFCCs and used in HMM recognition. In this way, 

we have different Tandem systems which differ in the MLP 

input features. The units for MLP posterior estimation and 

HMM recognition are also varied (tonal or not) for analysis. 

3. Experiments 

3.1. Experiment setup 

The experiments were conducted on the MATBN (Mandarin 

Across Taiwan-Broadcast News) corpus [17]. The training set 

includes 13 hours of gender-balanced broadcast news collected 

in Taiwan from November 2001 to December 2002. A one-

hour set of broadcast news collected in 2003 was used for test-

ing. We started with 36 phonemes (monophone) and expanded 

each vowel to four tonal vowels while kept the consonant part 

unchanged. Thus, we obtained a 75 toneme set as the MLP 

training target. Only the four lexical tones are included in the 

toneme set with the neutral tone mapped to tone 3. Because 

there are few syllables with the neutral tone, adding it to the 

toneme set caused data-imbalance problem [7]. The 147 intra-

syllable right-context-dependent Initial-Final (RCDIF) units 

were similarly expanded to 257 tonal RCDIFs including In-

itials and tonal Finals as the recognition target for HMM train-

ing. RCDIF is widely used for Mandarin speech recognition. 

The Initial is the initial consonant of a syllable, while the Final 

is the vowel (or diphthong) part plus an optional medial or 

nasal ending. Each RCDIF unit (tonal or not) was modeled as 

an HMM of three states. A trigram language model was used 

in decoding. The toneme-level training labels were based on 

forced alignment results. 

3.2. LVCSR result 

We list in Table 1 the character error rate (CER) for each 

LVCSR experiment with different configurations. Row (a) is 

the conventional HMM system with MFCC features and 

serves as the non-Tandem baseline. The rest are all Tandem 

systems and we show what posteriors are used in the first col-

umn. The second and third columns show the target of MLP 

(36 phonemes or 75 tonemes) and HMM (147 RCDIFs or 257 

tonal RCDIFs) in each system as explained in detail in Sec. 3.1. 

Due to different cardinality in the sets of acoustic units used, 

the dimension of posterior vectors and the number of HMM 

models are varied among the experiments. Therefore, we 

change the mixture number of HMMs in each system to obtain 

similar number of parameters for reasonable comparison.  

In rows (b) to (g), the MLP targets are the 36 phonemes 

disregarding the tone. (b) is the conventional MFCC Tandem 

system and (c) is the Gabor Tandem system [12]. The two sys-

tems achieved comparable results and integrating them in 

posterior level (row (d)) improved the performance. This is 

because the complementarity of the cepstral and spectro-

temporal features as pointed out in previous works [17, 20]. 

Mel filter bank

spectrogram

logConvolution

with 4 Gabor 

filter banks

F0

●●● ●●● ●●●●●●
F0 F0 F0

MLP MLP MLP MLP

posteriors posteriors posteriors posteriors
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Replacing HMM units with tonal RCDIFs improved consis-

tently among the three posteriors; (e) and (f) yield statistically 

significant improvements over (b) and (c); (g) achieve statisti-

cally significant improvements over (b) to (d). Here, the confi-

dence level of significant test is set to 95%. This fact suggests 

that the different tones affect the MFCCs and posteriors, al-

though the MFCCs smooth out much signal level fluctuation 

and the posteriors are obtained mainly to discriminate among 

phonemes, not tones. Using tonal RCDIFs allows HMMs to 

learn the variation of MFCCs and posteriors across tones and 

benefits the performance. 

In rows (h) to (j), we replace the MLP target with tonemes. 

Gabor toneme posteriors, (i), statistically significantly 

achieved better performance than the phoneme counterpart, (f), 

but the MFCC toneme posteriors, (h), did not. Combining the 

two posteriors, (j), yielded statistically significant improve-

ment over (g). Because training MLP with phoneme targets is 

mainly aimed to discriminate between phonemes and some 

tonal clues may be lost in posteriors, Gabor toneme posteriors 

retain more information to model the tonal targets in HMM 

and provide improvement. However, owing to that every post-

erior set is concatenated with MFCCs as the observations of 

HMM, the tonal clues in cepstral features are already retained 

and thus the MFCC toneme posteriors offer little additional 

tonal information as compared to (e). Besides, comparing (i) 

and (j) to (f) and (g), we see more improvement (1.8% to 2.1%) 

than (f) and (g) to (c) and (d) (0.8% to 1.0%). Because Gabor 

features extract much more modulation information than cep-

stral features, they are more suitable for modeling tonal acous-

tic units than MFCCs or phoneme posteriors; the latter focus 

on discriminating between phonemes and retain little tonal 

variation. Hence, changing MLP targets to tonemes helps 

learning more tonal information at the front-end ((i) and (j)). 

Without such information, what the tonal HMM units can do 

in discriminating the tones is limited. However, the improve-

ment from the tonemes for MLP and tonal RCDIFs for HMM 

units are additive. 

Finally, we augment the MLP input features with F0 and 

report the result in (k) to (m). Adding the pitch features of-

fered consistent improvement over (h) to (j); the improve-

ments from (h) to (k) and (j) to (m) are statistically significant 

while (i) to (l) are not. Additional to the information from mel-

spectrogram where the MFCC and Gabor features are ex-

tracted, the F0 provide clues directly from speech signals and 

they are beneficial. In our experiments, the system integrating 

pitch, cepstral and spectro-temporal features and modeling 

tone and phoneme variation simultaneously (tonemes for MLP 

and tonal RCDIFs for HMM), (m), achieved the best perfor-

mance, 4.1% absolute or 19.3% relative CER improvement 

compared to the conventional Tandem system baseline, (b). 

3.3. Analysis 

Here, we investigate the frame-level tone and phoneme classi-

fication accuracy for the posteriors with different MLP input 

features. Firstly, we show the frame accuracy of the four tones 

and their total in Fig. 2. The six bars in each tone type corres-

pond to the accuracy for six toneme posterior sets (used in (h) 

to (m) in Sec. 3.2): MFCC, Gabor, Gabor+MFCC, F0+MFCC, 

F0+Gabor, and F0+Gabor+MFCC. To calculate the frame-

level tone accuracy, we excluded consonants and summed the 

posterior probabilities of all tonemes having the same tone but 

varied phoneme parts, frame by frame. Thus, only four proba-

bilities were obtained for the four tones although there are 75 

tonemes. We then classified the tone following the maximum 

a posteriori (MAP) criterion on the tone posteriors. 

Table 1. CER for each recognition system with varied 

features and training targets. 36 phonemes or 75 to-

nemes for MLP target, and 147 RCDIFs, or 257  tonal 

RCDIFs as HMM units 

Features for estimating 

the posteriors 

MLP 

target 

HMM 

unit 
CER(%) 

(a) MFCC (non-Tandem) × 147 24.6 

(b) MFCC 36 147 21.2 

(c) Gabor 36 147 21.3 

(d) Gabor+MFCC 36 147 20.4 

(e) MFCC 36 257 20.3 

(f) Gabor 36 257 20.3 

(g) Gabor+MFCC 36 257 19.6 

(h) MFCC 75 257 20.4 

(i) Gabor 75 257 18.2 

(j) Gabor+MFCC 75 257 17.8 

(k) F0+MFCC 75 257 19.5 

(l) F0+Gabor 75 257 17.9 

(m) F0+Gabor+MFCC 75 257 17.1 

 

Figure 2: The frame-level tone accuracy of different 

features used with MLP for tonemes 

 

Figure 3: The frame-level phoneme accuracy for dif-

ferent MLP targets and input features. 

There is a common trend for all the four tones. In the first 

three bars, the Gabor features resulted in the best accuracy 

while MFCC the worst. Because the 2-D Gabor filters have 

different sloped pattern in spectrogram according to their pa-

rameters and respond to different spectro-temporal modulation, 

the Gabor features are more sensitive than cepstral features to 

frequency component changing across time and frequency 

band. Therefore, Gabor features retain more information 

needed for tone classification and improve accuracy. Owing to 

that the performance of MFCC features was much worse than 
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Gabor, and combining the two sets of posteriors slightly dete-

riorated the performance. In the last three bars, we additionally 

appended F0 to features in the first three. With the additional 

pitch features, the accuracy is consistently improved in every 

tone and every feature set. As mentioned above, even though 

Gabor filters parameterize considerable spectro-temporal 

modulation components, the mel-spectrogram, where the Ga-

bor features are extracted, still somewhat smooth the spectro-

gram. The F0 features provide additional information from the 

speech signal directly. From the above two facts, Gabor fea-

tures outperform MFCC in tone classification, and augmenting 

them with F0 (5th bar) further achieved the best performance. 

In Fig. 3, we show the frame-level phoneme accuracy of 

different phoneme types (unvoiced consonants, voiced conso-

nants and vowels) and their total. The first three bars corres-

pond to MFCC features (posteriors used in (e), (h), and (k)), 

the next three to Gabor (used in (f), (i), and (l)), and the last 

three to MFCC+Gabor (used in (g), (j), and (m)). In each 

group of the three bars, the first bar is with MLP for 36 pho-

nemes, the other two for 75 tonemes, and the third with F0 

used in addition. To calculate the phoneme accuracy, for each 

frame, we summed the posterior probabilities of all tonemes 

with the same phoneme but varied tone. Thus, the frame-wise 

phoneme posteriors are obtained for MAP classification. 

We see in Fig. 3 that for unvoiced consonants, vowels, and 

the total, Gabor posteriors (the middle three bars) outperform 

MFCC (the first three), and their integration (the last three) 

improve further; for voiced consonants, MFCC are superior to 

Gabor, and their integration still perform even better. Consis-

tent to previous results [17], there is complementarity among 

Gabor and MFCC features in phoneme recognition, and inte-

grating those offers improvement. In addition, comparing the 

1st, 4th, and 7th bars to 2nd, 5th, and 8th respectively, we see 

the phoneme targets result in higher phoneme accuracy than 

tonal targets. Because in the former, the MLP was aimed at 

discriminating among the phonemes while the MLP was also 

affected by tones in the latter. Although the former offers bet-

ter phoneme accuracy, it leaves less tone information for the 

following HMM and thus causes higher overall CER ((e) to (g) 

vs (h) to (j)). Interestingly, the 3rd, 6th, and 9th bars (with F0) 

outperform 2nd, 5th, and 8th (without F0) correspondingly. 

This indicates the pitch features helps discriminating not only 

the tones, which is well known, but the phonemes as well. 

Table 2 list the toneme accuracy of different features used 

with MLP for tonemes. It simultaneously considers the effect 

of features on both tone and phoneme accuracy. The six cases 

correspond to the six bars in Fig 2 and the 2nd, 3rd, 5th, 6th 

8th, and 9th bars in Fig. 3. There is highly correlation between 

toneme accuracy in Table 2 and CER ((h) to (m)) in Table 1. 

In summary, both Gabor and F0 features help in tone clas-

sification. To classify the phonemes, all the three features con-

tain complementary information, and integrating them im-

proves the performance. Although phoneme MLP targets 

achieve higher phoneme accuracy than toneme MLP targets, 

the phoneme posteriors hold less tonal clues and result in 

higher CER in LVCSR. The F0+Gabor+MFCC toneme post-

eriors, giving the best phoneme classification with slight per-

formance degradation in tone, offer the greatest improvement 

in both toneme accuracy and CER. 

Table 2. Frame-level toneme accuracy (%) of different 

features used with MLP for tonemes 

Features Acc. Features Acc. 

 MFCC 62.9 F0+MFCC 65.1 

 Gabor 68.0 F0+Gabor 69.4 

 Gabor+MFCC 69.3 F0+Gabor+MFCC 70.7 

4. Conclusion 

We utilize MLP for modeling tones and phonemes with 

MFCC, Gabor, and pitch features. The resulting posteriors 

were integrated in a Tandem system and yielded a 19.3% rela-

tive CER reduction over an MFCC Tandem baseline. Gabor 

and pitch features are shown useful for tone classification. In 

classifying phonemes, MFCC and Gabor features contribute 

differently and depend on phoneme types, while adding pitch 

features provides consistent improvement. These complemen-

tarities among the three types of features originate naturally 

from the varied way these features are extracted, and explain 

the CER reduction achieved by combinatory posteriors in our 

experiments in Mandarin Chinese. 
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