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ABSTRACT 

We propose a method to enhance multi-stream Gabor and MFCC 
features using data-driven hierarchical phoneme clusters to yield 
more discriminating posteriors. We take into account different 
hierarchy structures, and in addition perform mean and variance 
normalization. A relative improvement of 11.5% over the conven-
tional MFCC Tandem system was achieved in experiments con-
ducted on Mandarin broadcast news. We analyze the complemen-
tarity between Gabor and MFCC features for different types of 
phonemes, and investigate the benefits that come from using hie-
rarchical phoneme clusters. 

Index Terms— spectro-temporal features, LVCSR, clustered 
hierarchical MLP 

1. INTRODUCTION 

In recent years, much work has been put into improving the per-
formance of automatic speech recognition (ASR) by including 
longer context and temporal modulation information in features as 
compared to the conventional Mel frequency cepstral coefficients 
(MFCCs) and perceptual linear prediction (PLP) features. The 
MFCC Tandem system was successful in its use of a much longer 
context window to capture the temporal modulation information of 
speech signals with the aid of artificial neural networks (ANN) [1]. 
Modified ANN structures, such as hierarchical or parallel multi-
layer perceptrons (MLP) and MLPs with two or three hidden lay-
ers, were shown to provide even better performance [2, 3, 4, 5, 6, 
7]. 

However, spectro-temporal modulation also plays an impor-
tant role in speech signals. Intonation, coarticulation, and transi-
tion across phonemes naturally produce sloped patterns on the 2-D 
spectrogram. This is supported by recent findings in physiological 
experiments which showed that a large percentage of neurons in 
the primary auditory cortex of mammal species respond to signals 
with different spectro-temporal modulations [8]. These findings 
lead to substantial efforts in parameterizing those behaviors: auto-
regressive models and frequency domain linear prediction were 
used for extracting spectro-temporal features [9, 10], and ap-
proaches using independent component analysis and non-negative 
sparse coding were also proposed [11]. These approaches all re-
sulted in significant improvements. 

Filtering the log mel-spectrogram with 2-D Gabor filters is 
another way to extract the spectro-temporal behavior of signals 
[12, 13, 14]. Kleinschmidt and Gelbart employed a feature-finding 
neural network (FFNN) to iteratively adjust the parameters of 
Gabor filters for different recognition data [12]. In contrast, Zhao 
and Morgan selected Gabor filter parameters to divide the tempor-
al modulation frequency from 1 to 16 Hz and the spectral modula-

tion frequency from zero to two cycles per octave equally on a 
logarithmic scale [13], which was found to most closely corres-
pond to human speech recognition [15]. They further divided 
Gabor filters into several streams, each of which covers a subset of 
Gabor filters within a specific spectro-temporal modulation fre-
quency band. This multi-stream approach can be viewed as an 
ensemble of several recognition systems that yields better perfor-
mance than each individual system [16]. Recently, this multi-
stream approach was extended to obtain even more powerful spec-
tro-temporal features and further improvement with increased 
number of feature dimensions [17, 18, 19]. 

Gabor features extracted following Zhao and Morgan's ap-
proach [13] have also been integrated with MFCCs at the phonetic 
posterior level, with the posteriors obtained using ANNs [20]. 
These combinatory posteriors were shown to yield improvements 
over the individual feature sets in phoneme accuracy; the authors 
also analyzed the complementarity between the two posteriors. A 
data-driven clustered hierarchical MLP (CHMLP) was also pro-
posed to obtain more discriminating posteriors [7]. Here, we in-
corporate the concept of CHMLP into the multi-stream, or inte-
grated, spectro-temporal and cepstral features and show improved 
performance in large vocabulary continuous speech recognition 
(LVCSR). We also investigate the benefits of hierarchical pho-
neme clusters, or CHMLP, when recognizing different types of 
phonemes. We further perform mean and variance normalization 
(MVN) on log-posteriors after dimension reduction, and demon-
strate even larger performance gains. 

2. PROPOSED APPROACH 

Here we summarize MFCC and Gabor feature extraction, the clus-
tered hierarchical posteriors from CHMLP, and how to put them 
together, in Sec. 2.1, 2.2, and 2.3, respectively. 

2.1. Input for MLP 

MFCC is one of the input feature sets for MLP. MFCCs are ob-
tained with the typical parameter settings, 39-dimension MFCC 
features from c0 to c12 plus derivatives obtained with a 25ms 
window and a 10ms shift. Each vector is then concatenated with 
its previous and following four feature vectors as the MFCC input 
for MLP. This is denoted as M in the following. 

We use 2-D Gabor filters to extract the spectro-temporal mod-
ulation information. The impulse response of Gabor filter G(t,f) is 
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where t, f, t, and f are the four parameters that must be chosen. 
Per previous work [13], we selected four sets of parameters of 
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Gabor filters, each corresponding to one Gabor filter bank, to 
cover from low to high spectro-temporal modulation bands. We 
convolve the log mel-spectrogram with the ith Gabor filter bank 
(i = 1 to 4 is the index for Gabor filter set). Used to train an indi-
vidual MLP, the respective output is denoted as Gi. 

2.2. Data-driven clustered hierarchical MLP 

The purpose of clustered hierarchical MLP (CHMLP) is to obtain 
more discriminating posteriors for recognition [7]. We first con-
struct a data-driven phonetic hierarchy using the hierarchical ag-
glomerative clustering (HAC) algorithm to cluster easily-confused 
phonemes, based on the probability of misclassification for every 
phoneme pair as evaluated using a monolithic MLP (the targets of 
which are the entire phoneme set). In each leaf node of the hie-
rarchy, an MLP is specially trained for a cluster of easily-confused 
phonemes; in each higher-layer node, an MLP is used for classify-
ing the input feature vector among its children nodes.  

Shown in Fig. 1.1d is a simplified example of CHMLP with 
only two layers, one root MLP, and several specialized MLPs 
respectively for HAC-induced subsets of phonemes C1, C2, …, Cn 
(or Ck with k as the phoneme subset index). In each CHMLP 
stream with input feature stream X, each specialized MLP is fed 
the same feature set X; root MLP, though, is fed set X', which may 
be different from X. Both X and X' can be either feature set M 
(MFCC) or one of Gi (Gabor). In Fig. 1, each specialized MLP is 
denoted as MLP(X,Ck), where the first parameter X indicates the 
input feature and the second parameter Ck the output target; the 
root MLP is denoted as root MLP(X'), where its parameter indi-
cates the input feature. We multiply the output posterior vectors of 
the specialized MLPs with the posterior probability for the corres-
ponding clusters obtained from the root MLP, and concatenate the 
resulting vectors as the hierarchical version posteriors for use in 
the Tandem system. 

A hierarchy with more than two layers can be imagined as a 
soft decision tree with the root MLP as a parent node in layer m  

MLP(X,C2)

MLP(X,Cn)

�

�

�

CHMLP

Feature X

root MLP(G1)

root MLP(G4)

�

�

� Arithmetic  mean

(1d)

(1b) Experiment (k)

MLP(X,C1)

Concatenate

root MLP(X’)

root MLP(M)

(1c)  Experiment (j)

� � �

CHMLP

G1 G4M

Arithmetic  mean

LogLog

Concatenate

LDA

Concatenated 
with MFCCs

(i), (j), (k)

HMM (Tandem 
system)

MLP(X,C2)

MLP(X,Cn)

�

�

�

MLP(X,C1)

Concatenate

MLP(X,C2)

MLP(X,Cn)

�

�

�

MLP(X,C1)

Concatenate

(1a)

X’=X in Experiment (i)

Fig. 1. (1a) Clustered hierarchical Tandem system with multi-stream post-
eriors in experiments (i), (j), and (k), which are the three different imple-
mentations of each stream of the top CHMLP block in Fig 1.1a. 

and specialized MLPs as its children in layer m + 1. The output 
posteriors of the parent node make the soft decision among its 
children, while a child MLP decides among its grandchildren 
(layer m + 2). Only leaf nodes decide among a phoneme subset. 
While different number of layers and hierarchies can be trained for 
different tasks, in our work and in a previous work [7], two layers 
were found to be optimal. 

2.3. Tandem system with clustered hierarchical combi-
natory posteriors 

In Fig. 1.1a, we show the proposed Tandem system. Experiments 
(i), (j), and (k) represent three different ways of obtaining multi-
stream, or integrated, clustered hierarchical posteriors from the 
features M and Gi and utilizing them in the Tandem system. The 
only difference between the three experiments is in the computa-
tion of the root MLP's output posterior (i.e. the estimation of the 
leaf cluster probability) in the top CHMLP block. For experiment 
(i), any one of the five streams (i.e., M, and G1 to G4) of the top 
CHMLP block are the same as in Fig. 1.1d, and the input of root 
MLP X' is the same as the input of the other specialized MLPs. As 
shown in Fig. 1.1c, for experiment (j), we use M as X' for all five 
streams. In Fig. 1.1b, we show that for experiment (k), in each 
stream, we first train four root MLPs with G1 to G4, respectively, 
and then multiply the arithmetic mean of their outputs with the 
output of the corresponding specialized MLPs. The process fol-
lowing the CHMLP block for experiments (i), (j), and (k) is illu-
strated in Fig. 1.1a: the log-arithmetic mean of the four CHMLP 
outputs with Gi inputs is concatenated with the logarithm of the 
outputs of the CHMLP with M input, linear discriminant analysis 
(LDA) is performed for dimension reduction and decorrelation, 
and the output is then concatenated with the MFCCs for the Tan-
dem system.  

We also designed several baselines, all of them Tandem sys-
tems, each with a different process for obtaining the posteriors. In 
experiments (a) and (b), the posteriors are obtained from a mono-
lithic MLP individually with either M or Gi as input. Therefore, 
they are simply Tandem systems baselines with either MFCC or 
Gabor posteriors [13]. In experiment (d), posteriors from mono-
lithic MLPs with input M and Gi are integrated to yield better 
posteriors for the Tandem system [20]. In experiment (c), our 
CHMLP baseline [7], we use CHMLP posteriors obtained from M 
only. In the above four experiments, we used principal component 
analysis (PCA) for dimension reduction and decorrelation. Re-
placing PCA with linear discriminant analysis (LDA) results in the 
four experiments (e) to (h).  

We took into account different hierarchical structures for 
CHMLP, concluding that for this work's task the highest perfor-
mance was achieved with three phoneme subsets for experiments 
(c) and (g) and two phoneme subsets for experiments (i), (j), and 
(k), all with two layers. We report the results for these settings 
below. 

In experiment (l), the posteriors in experiment (k) are en-
hanced by MVN after performing LDA. The normalized output is 
then concatenated with the MFCCs and used in the Tandem sys-
tem.  

3. EXPERIMENTS 

3.1. Experiment setup  
The experiments were conducted on the MATBN (Mandarin 
Across Taiwan-Broadcast News) corpus. The training set includes  
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Table 1. CER for experiments described in Sec. 2.3  

TANDEM  system 
CER 
(%) 

Relative error rate reduc-
tion (%) compared to 

(a) (b) 
(a)  MFCC, PCA 22.6 

� × 
(b) Gabor, PCA 22.3 1.3 

� 
(c) MFCC, CHMLP, PCA 22.1 2.2 0.9 
(d) Integration, PCA 21.6 4.4 3.1 
(e) MFCC, LDA 22.2 1.8 0.4 
(f) Gabor, LDA 22.2 1.8 0.4 
(g) MFCC, CHMLP, LDA 21.7 4.0 2.7 
(h) Integration, LDA 21.1 6.6 5.4 
Integration, CHMLP, LDA    
(i) Root MLP(X) 21.1 6.6 5.4 
(j) Root MLP(M) 20.7 8.4 7.2 
(k) Arithmetic mean 20.6 8.8 7.6 
(l) Experiment (k) + MVN 20.0 11.5 10.3 

13 hours of gender-balanced broadcast news collected in Taiwan 
from November 2001 to December 2002. A one-hour set of 
broadcast news collected in 2003 was used for testing. Two sets of 
acoustic units were used: a 36 monophone set as the MLP training 
target, and a total of 147 intra-syllable right-context-dependent 
Initial-Final (RCDIF) units as the recognition target for HMM 
training. The Initial is the initial consonant of a syllable, while the 
Final is the vowel (or diphthong) part which includes an optional 
medial or nasal ending. RCDIF is widely used for Mandarin 
speech recognition. There is a mapping table between the two sets 
of acoustic units; the phoneme-level training labels were based on 
forced alignment results. 

Every MLP was trained with feature-dependent input nodes, 
1000 hidden nodes, and label-dependent (either the entire mono-
phone set or a cluster-induced subset) output nodes. Each RCDIF 
unit was modeled as an HMM of three states. A trigram language 
model was used in decoding. 

3.2. LVCSR result 
Table 1 lists the character error rate (CER) for experiments (a) to 
(l), described in Sec. 2.3, all for a Tandem system but with differ-
ent processes for obtaining the posteriors. For PCA and LDA, we 
retained 95% of the total variance. The CER is 24.6% for MFCC 
system (i.e. no Tandem). 

Rows (a) (b), (e), and (f) are the baselines using a single post-
erior type: (a) is the conventional MFCC Tandem system and (b) 
the Gabor Tandem system [13]. Replacing PCA by LDA yields 
baselines (e) and (f). The integration of the Gabor and MFCC 
posteriors, the subject of previous work [20], yielded statistically 
significant improvements at the 95% confidence level in experi-
ments (d) and (h) as compared to the corresponding baselines for 
individual feature sets: (d) vs (a) (b) and (h) vs (e) (f). This shows 
that integration yields improvements not only for the phoneme 
recognition task [20] but also for LVCSR. CHMLP baselines (c) 
and (g) used hierarchical MFCC posteriors as features and outper-
formed (a) and (e). As presented above, we incorporated the 
integrated Gabor and MFCC posteriors with CHMLP in experi-
ments (i) to (k), yielded additional improvements over the multi- 
stream Gabor and MFCC posteriors in experiment (h), and clus-
tered hierarchical MFCC posteriors in experiment (g). We report 
only the results using LDA, as LDA consistently outperformed 
PCA in experiments (e) to (h). The CHMLP experiments (j) and (k) 
yielded statistically significant improvements at the 95% confi-
dence level over experiment (h); experiment (i) did not yield sta- 
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Fig. 2. Frame accuracy for different types of phonemes, with 36 mono-
phones as classification targets.  

tistically significant improvements (The 95% confidence interval 
is 21.45% to 20.75%). This is because the individual stream of 
Gabor filters used contained only part of the spectro-temporal 
modulation band and not enough for estimating posterior proba-
bilities of clusters. Thus, we obtain better cluster estimates by 
taking into account the entire frequency band when averaging the 
output posteriors of the root MLPs over the four different inputs 
Gi as in experiment (k), or by feeding the root MLP with the 
MFCCs as in experiment (j). 

The MVN added in experiment (l) yielded the best result, an 
11.5% relative improvement over the conventional MFCC Tan-
dem system (a) and a 10.3% improvement over the Gabor Tandem 
system (b). 

3.3. Improvement analysis 

3.3.1. Comparison between MFCC, Gabor, integrated, and 
hierarchical posteriors 
We first investigated the performance of different posteriors in-
cluding three sets obtained from MLP (MFCC, Gabor, and their 
integration) and two sets from CHMLP  (MFCC and the integra-
tion of MFCC and Gabor), on different types of phonemes in 
terms of the frame accuracy achieved. The phoneme set was di-
vided into three categories: unvoiced consonants, voiced conso-
nants, and vowels, the frame proportions of which are 31%, 6%, 
and 63%, respectively. We classified the speech signals frame-by-
frame to 36 monophone units based on a maximum a posteriori 
(MAP) criterion. The frame accuracy was averaged over each type 
of unit and is shown in Fig. 2. 

In each category in Fig. 2, the three middle bars respectively 
correspond to MFCC and Gabor posteriors, and their integration, 
all without hierarchy. We see that this integration (4th bar, purple) 
was always superior or comparable to the other two results (2nd 
and 3rd, red and green); this is consistent with the results in Table 
1. Comparing the 2nd and 3rd bars, we see that Gabor outperforms 
MFCC in vowels and unvoiced consonants while MFCC outper-
forms it for voiced consonants. The former is presumably due to 
the greater number of Gabor filter streams which retain more fre-
quency component information. In addition, it may be that the 
spectro-temporal information extracted by Gabor filters more ac-
curately reflects the formant transitions between vowels for diph-
thongs, which are abundant in Mandarin, as well as the transitions 
from silence to voiced parts in plosives. On the other hand, voiced 
consonants may be easily influenced by neighboring phonemes 
because they frequently follow vowels as the short nasal ending of 
Finals. The longer time span of Gabor filters may also include too 
much information from neighboring phonemes and thus overlook 
voiced consonants. 
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The results for hierarchical posteriors are the first (orange) and 
the last (blue) bars in each category in Fig. 2. Thus the first two 
bars are for MFCC posteriors alone, with and without the hierar-
chical structure, and the last two bars are for the integrated Gabor 
and MFCC posteriors, similarly with and without the hierarchical 
structure. In both cases, CHMLP (hierarchical posteriors) yielded 
higher accuracy for vowels, with degraded accuracy for voiced 
and unvoiced consonants. In the hierarchies constructed for this 
task, unvoiced consonants are clustered into one or two subsets in 
two- or three-leaf CHMLP, with the remaining group for vowels 
and voiced consonants. However, the vowel part is usually much 
longer than the consonant part; this frame sample imbalance be-
tween different leaves works against the unvoiced-consonant 
leaves for the root MLP and leads to degradation for unvoiced 
consonants. Correspondingly, this favors the leaf for vowels and 
voiced consonants, and thus leads to improved vowel recognition. 
The more specialization on vowel recognition of leaf MLP is 
another reason for the improvement. The data imbalance problem 
leads also to degraded recognition for voiced consonants, which 
are overlooked in leaf MLP.  

Although CHMLP did not consistently outperform in all cate-
gories, the improved vowel classification is more important in 
decoding and thus contributes more to character accuracy. This is 
partially because of the longer time span for vowels, which greatly 
affects the frame-by-frame accumulation of acoustic model scores 
during Viterbi decoding. Similar discovery was found previously 
[21]. This explains the improved LVCSR performance with 
CHMLP. 

In summary, the integration of MFCC and Gabor posteriors 
yields consistent improvements, and the clustered hierarchical 
approach for integrated posteriors yields even better performance 
for vowels, which dominate character accuracy, at the expense of 
accuracy for other categories. The best character accuracy was 
achieved using hierarchical integrated posteriors. 

3.3.2. Mismatch between training and testing data 
Although there is no noise in the corpus used, speaker variation 
still results in a mismatch between training and testing data. The 
histograms of the values of a sample component (the second) of 
the after-LDA log-posteriors obtained in experiment (l) before and 
after MVN are shown in the right and left panels of Fig 3, with the 
blue curve for training data and the red for testing. We see that the 
training and testing data distributions in the left panel are more 
consistent and symmetric around zero, and are thus better modeled 
by Gaussians. This observation holds for all components. We also 
computed the Bhattacharyya distance between the probability 
distributions for the posterior vectors for the training and testing 
data. We found that the distance was reduced by 27% after per-
forming MVN. Thus we see why MVN yielded further improve-
ments in experiment (l). 

4. CONCLUSION 

We showed that the integration of Gabor and MFCC posteriors in 
Tandem systems yielded relative improvements of 6.6% over an 
MFCC Tandem and 5.4% over a Gabor Tandem [13] for LVCSR, 
and proposed a hierarchical structure for this integration to obtain 
more discriminative posteriors and a further improvement of 8.8% 
over a MFCC Tandem. Adding an MVN step then yielded the best 
result, an 11.5% improvement. The hierarchical structure puts 
more emphasis on vowel recognition, which dominates acoustic 
model scores during decoding at the expense of other phoneme  
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Fig. 3. The histograms of the values of a sample component of the after-
LDA log-posteriors from training and testing data before and after MVN.  

types. MVN compensates for the mismatch between training and 
testing data and results in distributions that are better modeled as 
Gaussians. 
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